登录
首页 » C# » DizzyClient

DizzyClient

于 2020-06-16 发布
0 142
下载积分: 1 下载次数: 0

代码说明:

说明:  another generic upload.

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • draw camvas 2
    draw camvas 2
    2023-07-16 01:50:04下载
    积分:1
  • Tank_model
    用于流域水文过程模拟和预报的水箱模型,主要是在水利行业应用(For hydrological modeling and forecasting model tanks, mainly in the water industry applications)
    2021-04-09 18:48:59下载
    积分:1
  • 最完整的Kepware资料合集
    最完整的Kepware资料合集 pdf档(The integration of the most complete Kepware data)
    2018-01-23 20:15:16下载
    积分:1
  • 9927437active-noise-reduction
    说明:  利用matlab基于LMS算法的进行自适应滤波主动降噪(Adaptive filtering using LMS algorithm)
    2019-06-30 15:19:38下载
    积分:1
  • 物流路径规划
    说明:  根据原来的路径,重新进行物流路径规划,并将所得结果输出。(According to the original path, the logistics path is re-planned and the results are output.)
    2020-06-17 11:20:01下载
    积分:1
  • mattjj-matlab-hsmm-40a597a
    HSMM算法的源代码,只需修改一些参数就可以实现各种方式(HSMM algorithm source code, just modify some parameters can be achieved in a variety of ways.)
    2018-05-05 17:29:27下载
    积分:1
  • 伺服控制
    伺服控制伺服控制 de posicion stm8105c6,使用两个 gpio 并用定时器 1 次惊险 pwm 信号,
    2022-10-28 06:00:04下载
    积分:1
  • 测试是单元测试JUnit框架C著名的使用
    CppUnit 是著名的用于单元测试的JUnit框架的C++移植。测试输出是XML或文本格式,可以用于自动化测试和基于GUI的监督测试。 来源:http://sourceforge.net/projects/cppunit/ -CppUnit is famous uses in unit test JUnit the frame C transplant. The test output is XML or the text format, may use in the automated test and based on the GUI surveillance test. Origin: Http://sourceforge.net/projects/cppunit/
    2022-01-30 16:38:01下载
    积分:1
  • Unet-master2
    CN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。(CN classifies images at the pixel level, thus resolving the problem of semantic segmentation at the semantic level. Unlike classical CNN, which uses full-connection layer to get fixed-length feature vectors after convolution layer for classification (full-connection layer + soft Max output), FCN can accept any size of input image, and uses deconvolution layer to sample feature map of the last convolution layer to restore it to the same size of input image, so that each pixel can be generated. At the same time, the spatial information of the original input image is retained. Finally, the pixel-by-pixel classification is carried out on the feature map sampled above.)
    2019-04-19 19:16:29下载
    积分:1
  • HOG_OpenCV_Single
    说明:  初学者,入门,识别率较低。vs2010+opencv2.44(Beginners, beginners, low recognition rate. VS2010 + opencv2.44)
    2019-04-24 21:06:29下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载