一种改进的TOA——AOA混合定位算法
混合定位中很不错的一篇文章,看过之后很受启发在TOA和AOA误差服从零均值的高斯分布时,以上⑧无AOAQ阵中AOATOA/AOA混合定位算法的克拉美一罗下界(CRLB)为:校准离差取rP=(GQG)90Q阵中AOA校准离差取(x-x1)/其中:G=(x-x r(y-m)/r(19)洲6050(x)2(+(y-y))(x-x)(+(y-y)0.020.040.060080.100.12(x-x1)AOA标准离差(stda,单位radx-图1都市环境中算法性能比较3仿真与分析为了检验和比较算法在实际蜂窝网络信道环境中的定位性能,假定在一蜂窝网络中,小区半径为2500m,参与TOA测量的BS为服务BS和4个相邻的BS,其位置坐标分别为(0,0),(4330,2500),(4330,2500),(0,5000),(-4330,2500)。假定由测量系统造成的TOA测量误差服从均值为0,方差为30米的高斯分布,信道环境造成的NIOS误差满是TP1.5信道模型14,服务BS始终能够提供AOA,AOA测量误差服从均值为0和一定标准差的高斯分布。图1为都市环境中假定只有服务BS能视距(LOS)传播时,MS在服务小区内均匀分布,在不同AOA标准差下算法定位误差在125m内的概率。图中可见,Q矩阵中σα的取值对算法定位性能有很大影响,在AOA标准差较小时用TOA测量值η近似替代σa能取得更好的定位性能,这是由于WLS算法采用了Q阵加权。此外,120只要AOA测量值达到一定精度(标准差小于一定值),采用10-10A-A0A00TOAAOA混合定位法就能取得比单纯TOA定位更好的性能。图29080为乡村环境中在不同AOA标准差下,由单纯TOA及 TOA/AOA70定位法(Q矩阵中取n=r)得到的由均方根误差(RMSE)表示的定位性能。由图2可见,乡村环境中由于TOA测量精度较高,30对AOA的精度要求也高。只有当AOA标准差更小(小于10-3)AOA标准离差(og)时,混合定位算法才能取得比单纯TOA定位更好的性能。图2乡村环境中算法性能比较为了检验MS与服务BS距离对算法定位性能的影响,在一般都市环境中可以假定MS位于与服务BS具有不同距离的两个位置(1200,0)和(2400,0)分别进行定位估计,五个BS具有非视距TOA测量值的概率分别为:0、0.2、04、0.6、0.8、1,服务BS能够提供的AOA测量误差分别服从均值为0,标准差为01、0.0lrad的高斯分布,Q矩阵中用r近似替代σn,对每个位置在每种条件下分别进行100次测量,算法在无AOA及具有两种标准差的AOA时的定位结果(RMSE)如图3、4所示仿真结果表明:AOA参与卜AOA标准离差=001AOA标准离差=0,01定位只有在AOA本身误差不大AOA标准离差=0.1AOA标准离差=0.1无AOA无AOA的情况下,才能对定位性能有改200善;如果AOA本身误差增大150则对TOA定位结果并不会有改l00善;MS距离服务BS越近,则50采用混合定位算法的效果越好。00.00.204060.810000.20.40.608104结论BS非视距概率Bs非视距概率图3个同标准差时算法图4不同标准差时算法本文的分析和仿真结果表性能比较(1200,0)性能比较(2400,0)明,只要服务BS提供的AOA测量值达到一定精度,合理选择Q矩阵中AOA标准差取值,本文提出的 TOA/AOA混合定位算法就o1994-2012ChinaAcademicJournalElectronicPUblishingHouseAllrightsreservedhttp:/www.cnki.neto1994-2012ChinaAcademicJournalElectronicPUblishingHouseAllrightsreservedhttp:/www.cnki.net
- 2020-12-02下载
- 积分:1
张贤达的《高阶统计量信号处理方法》
高阶统计量分析方法是一种重要的非高斯信号分析方法,在此上传张贤达的这本书,希望对大家的学习有所帮助专题内容概述高阶统计量的定义、性质和估计155()高阶矩、高阶累积量及其谱·*·····“········““··“·(二)高阶累积量与高阶谱的性质三)高阶累积量与高阶谱的估计…......19、非最小相位系统的辨识21(一)基本问题21(二)MA系统的辨识.25(三)ARMA系统的辨识…135四、谐波恢复42()基本问题42()谐波恢复的高阶累积量方法……………·………43五、空间窄带信号源的波达方向估计()基本问题46(二)基于二阶统计量的DOA估计方法及其不足.147(三)基于高阶统计量的DOA估计方法53、概述高阶统计量( (Higher-order Statistics)是指比二阶统计量更高阶的随机变量或随机过程的统计量。二阶统计量有:〉随机变量(矢量):方差、协方差(相关矩)、二阶矩。随机过程:自相关函数、功率谱、互相关函数、互功率谱、自协方差函数等高阶统计量有:随机变量(矢量):高阶矩( Higher-order Moment),高阶累积量(Higher-order Cumulant)随机过程:高阶矩、高阶累积量、高阶谱( Higher- order Spectra,Polyspectra)。从统计学的角度,对正态分布的随机变量(矢量),用一阶和二阶统计量就可以完备地表示其统计特征。如对一个高斯分布的随机矢量,知道了其数学期望和协方差矩阵,就可以知道它的联合概率密度函数。对一个高斯随机过程,知道了均值和自相关函数(或自协方差函数),就可以知道它的概率结构,即知道它的整个统计特征。但是,对不服从髙斯分布的随机变量(矢量)或随机过程,一阶和二阶统计量不能完备地表示其统计特征。或者说,信息没有全部包含在一二阶统计量中,更高阶的统计量中也包含了大量有用的信息。高阶统计量信号处理方法,就是从非高斯信号的高阶统计量中提取信号的有用信息,特别是从一、二阶统计量中无法提取的信息的方法。从这个角度来说,高阶统计量方法不仅是对基于相关函数或功率谱的随机信号处理方法的重要补充,而且可以为二阶统计量方法无法解决的许多信号处理问题提供手段。可以亳不夸张地说,凡是使用功率谱或相关函数进行过分析与处理,而又未得到满意结果的任何问题,都值得重新试用高阶统计量方法。高阶统计量的概念于1889年提出。高阶统计量的研究始于六十年代初,主要是数学家和统计学家们在做基础理论的研究,以及针对光学、流体动力学、地球物理、信号处理等领域特定问题的应用研究。直到八十年代中、后期,在信号处理和系统理论领域才掀起了高阶统计量方法的研究热潮。标志性的事件有:1. K. S. Lii. m. rosenblatt "Deconvolution and Estimation of TransferFunction phase and Coefficients for non-Gaussian Linear processes AnnStatistcs, Vol, 10, pp. 1195-1208, 1982首次用高阶统计量解决了非最小相位系统的盲辩识问题。2.C.L. Nikias,M.R. Raghuveer的综述文章“ Bispectrum Estimation:ADigital Signal Processing Framework”在Proc.正EE发表,1987July3.1989、1991、1993、1995、1997、1999年举办了六届关于高阶统计量的信号处理专题研讨会(海军研究办公室,NSF, IEEE Control SystemSociety, IEEE ASSP Society, IEEE Geoscience and Remote sensingSociety4. IEEE Trans.onAC1990年1月专辑5. IEEE Trans, on AssP1990年7月专辑。6.J.M. Mendel的综述文章 Tutorial on Higher- Order statistics( Spectra)inSignal Processing and System Theory: Theoretical Results and SomeApplications”.Proc,正E,1991(主要是关于非最小相位系统辨识)。7.C.L. Nikias&A.P. Petropula的专著 Higher-order Spectral Analysis:ANonlinear Processing Framework,由 Prentice-Hall I1993出版。8. Signal Processing,19944月专辑。9. Circuits, Systems, and Signal Processing,1994.6月专辑。高阶统计量方法已在雷达、声纳、通信、海洋学、电磁学、等离子体物理、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学等领域的信号处理问题中获得应用。典型的信号处理应用包括系统辨识与时间序列分析建模、自适应估计与滤波、信号重构、信号检测、谐波恢复、图像处理、阵列信号处理、盲反卷积与盲均衡等。在信号处理中使用高阶统计量的主要动机可以归纳成四点1、抑制未知功率谱的加性有色噪声的影响。2、辨识非最小相位系统或重构非最小相位信号。自相关函数或功率谱是相盲的,即不包含信号或系统的相位信息。仅当系统或信号是最小相位时,二阶统计量的方法才能获得正确的结果。相反,高阶统计量既包含了幅度信息,又保留了信号的相位信息,因而可以用来解决非最小相位系统的辨识或非最小相位信号的重构问题。3、提取由于高斯性偏离带来的各种信息对于非高斯信号,其高阶统计量中也包含了大量的信息。对模式识别、信号检测、分类等问题,有可能从高阶统计量获得信号的显著分类特征,4、检测和表征信号中的非线性以及辨识非线性系统。如用来解决非线性引起的二次、三次相位耦合问题。参考资料:1、张贤达,《时间序列分析一高阶统计量方法》,清华大学出版社,1996。2、沈凤麟等,《生物医学随机信号处理》(第9章),中国科学技术大学出版社,1999。3 J M. Mendel. "Tutorial on Higher-order Statistics(Spectra) in SignalProcessing and Systems Theory: Theoretical Results and SomeApplications. Proc. IEEE, Vol. 79, pp. 278-305, 19914, C. L. Nikias A. P, Petropulu. Higher-order Spectral Analysis: ANonlinear Processing Framework. Prentice-Hall. 19935 C L. Nikias J. M. Mendel.Signal Processing with Higher-orderSpectra. IEEE Signal Processing Magazine, Vol 10, July, pp 10-37, 19936 C. L Nikias M. R Raghuveer." Bispectrum Estimation: A DigitalSignal Processing Firamewoork". Proc. IEEE, Vol. 75, pp. 869-891, 19877 P. A. Delaney d. O. Walsh. " A Bibliography of Higher-Order Spectraand Cumulants". IEEE Signal Processing Magazine, Vol 11 July, pp. 61-7019948、J.A. Cadzow.“ Blind Deconvolution via Cumulant Extrema”.IEEESignal Processing Magazine, Vol 13, No 3, pp 24-42, 1996www.ant,uni-bremen.edu.de/hoshome二、高阶统计量的定义、性质和估计(一)高阶矩、高阶累积量及其谱从随机变量→随机矢量→随机过程)1、随机变量的特征函数与累积量定义:设随机变量x具有概率密度fx),其特征函数定义为(s)=f()edx=Eel其中s为特征函数的参数。(可看作八x)的拉普拉斯变换)特征函数Φ(s)只是参数s的函数。对Φ)求k次导数,可得Φ^(s)=Exe因此(O)=E}=m也就是说)在原点阶导数等孩x阶筹k。因此,Φ(s)也称作矩生成函数(又叫第一特征函数)。矩生成函数可以唯一地、完全地确定一个概率分布。这可由矩生成函数唯一性定理阐明:定理:设F(x)和G(x)是具有相同矩生成函数的分布函数,即:e dF (x)= esdG(x)则F(x)=G(x)由矩生成函数可以定义随机变量κ的累积量生成函数(又叫第二特征函数)及累积量。定义:设随机变量x的矩生成函数为Φ(s),则函数H(s)=nΦ(s)称为x的累积量生成函数,而v()在原点的k阶导数dky(s)ds k0称为x的k阶累积量如果将s)和v展开成 Taylor级数,根据以上定义,就会有①(s)=1+m1S+m2S2+…+,,mkS+…k!(2+4+x12cmk!k1也就是说,x的k阶矩和累积量分别是其矩生成函数和累积量生成函数的Taylor级数展开中s项的系数。2、随机矢量的特征函数与累积量定义:令x=[x,x2,…,x是一随机矢量,且s=s,s2,…,sr,则随机矢量x的矩生成函数定义为Φ(S1SES11+2x2+…+Skxkl52为Ex的累积量生成函数定义为(S1,S2,…,Sk)=lnΦ(s1,x的(vy2…,w)阶矩和累积量分别定义为矩生成函数和累积量生成函数的Iayr级数展开中S1S2…S项的函数,即0Φ(S1,s2;…,s)ExVIS"Y(1521512skas1Os2…ask其中vko对v=V2=…=认=1的特殊情况,记随机矢量x的矩和累积量分别为mom(,,cum(Y1X我们下面将用它们来定义随机过程的高阶矩和累积量。3、随机过程的高阶矩和高阶累积量定义:设{x(n)}为k阶平稳随机过程,则该过程的k阶矩定义为ma(z1,z2,…,k-)=mom{x(n),x(n+),…,x(n+xk-1)}而k阶累积量定义为cs(1,z2,…,k-)=cum{x(m),x(nt+),…,x(n+tk1)}根据这一定义,平稳随机过程的k阶矩和k阶累积量实质上就是取x1=x(n),x2=x(n+a),…,x=x(n+k)之后的随机矢量[(n),x(n+z),…,
- 2020-12-03下载
- 积分:1