三维孔洞储层建模及其地震波场正演模拟
三维孔洞储层建模及其地震波场正演模拟,理论讲解很透彻,分析思路清晰1290地球物理学进展26卷预测结果,即从具有确定性资料的控制点(如井点)解释.同时,利用该过程中产生的6冂井的时深关出发,推测出点间(如井间)确定的、唯一的储层参系,用三角剖分网格建立了速度模型并经过井点校数随机模拟是从一个随机函数z(v)中抽取多个可正,实现了对工区构造框架的时深转换通过以波阻能实现,即人工合成反映Z()空间分布的可供选择抗为协变量的孔隙度属性模拟,借助于三维可视化的、等概率的高分辨率实现技术,我们可以大致看到孔洞储集体的形态、分布、对于该工区来说,三维地震资料分辨率较高,对规模及连通性(图1).根据孔隙度发育情况,我们将孔洞储层已经有一定的反映(常表现为低频、不连续强储层分为孔洞欠发育(致密)、孔洞较发育(较致密)振幅反射).通过岩石物理分析又发现孔洞储层低速、和孔洞发育(较疏松)三种类型并分别设计了各自相低密,常规波阻抗反演能够刈其几何形态、空间接触应的弹性参数,同时以模拟出的孔洞形态约束弹性关系定量表征.因此本文将波阻抗数据体作为协变波正演模拟时孔洞体的空间分布量地震属性纵向等值法),采用确定性的协克里金2波动方程正演模拟原理插值算法,对孔洞储层的物性参数进行了三维建模反演所起到的作用,是通过归一化的测井曲线对碳酸盐岩岩溶风化壳孔洞型油气藏属于一种典原始地震数据进行校正,使数据在空间上得到了有型的、复杂的非均质范畴,可以视为由准均匀介质中效的平衡,从而使孔洞反映的更清楚;二是在地质建呈不规则分布的、大小和形状各异的低速体共同组模过程中通过宏观控制,充分利用空间变量的相关成的非层状储集体.在地震剖面上看到的储集体的性,克服低频模型的不足提高属性模拟的分辨率波应是这些低速体的散射(绕射)波.若利用常规波2【V动方程正演模拟方法所使用的均匀介质中的声波方N()程或弹性波方程,难以得到具有复杂非均匀性的孔cline洞型油气藏的地震波场响应2.因此,本文采用非均匀横向各向同性弹性介质中的弹性波波动方程进l()行正演模拟计算,取z轴为垂直对称轴,它可以表示为如下的一阶方程组:a0awta(λ+2naU)+AW(1)7(1(λ1+21)2+λax图1地质模型孔洞储集体俯视图Fig 1 Top view of the cavity reservoiμ(ain geological model其中:(U(x,z,t),W(x,z,t)是速度向量;B(x,z)是密度ρ=g(x,z)的倒数,或者叫疏度;r建模过程中最大的难点是求取准确的速度场,τ(x,z,t),za=x(x,z;t),n=rn(x,z,t)是应木文首先收集整理了工区内6口探井、评价井的钻力张量.A,P/和A1,p分别为水平和垂直方向上井分层数据及多种测井曲线(电阻率、声波时差、密的拉梅系数;为一新的弹性常数可见,在横向各度、自然伽玛等),对其进行了归一化和环境校正,并向同性弹性介质中,独立的弹性常数有五个,它们是制作了合成记录.通过与井旁地震道对比准确标定密度、在垂直方向上的纵、横波速度及纵、横波的各了前中生界侵蚀顶面(15)石炭系双峰灰岩顶面向异性系数,即:(T5。),中下奥陶统顶面(T7)、下奥陶统蓬莱坝组顶面(T7),它们都是区域性的波峰反射在此基础+2uL, Vsi-A pL上采用25m*25m测线密度对该区块6.25km2的3U地震数据体T5°、T5、T74、T78层位进行了精细√λ1+2,CSV闵小刚,等:三维孔洞储层建模其地震波场演模拟1291在具体的有限差分解法上,除了规则网格外,非均匀介质模型的弹性波动方程正演模拟特别是种较为先进的交错网格(图2)最早由 madariaga提当每一个波长中的网格点数多于10个时, Levander出, Virtex在模拟各向同性介质屮SH波和P(1988)2的结果显示,网格色散与网格各向异性均Sⅴ波时也使用了这种差分网格,其精度为o(△2十可忽略不计△x2),在不增加计算工作量和存储容间的前提下,假设U,W分别为介质在x,z两个方向上的速和常规差分网格相比局部精度提高了4倍,且收敛度分量的离散量,R,T,H分别为rxr=和τx的离速度也较快. Levander2又将这种差分网格的精度散量,Lo,M,L1,M1和M2分别为y,kM,A⊥?P1和提高到o(△t2+△x). Crase2则发展了精度可达任g的离散量在(1)式中,各导数项均用中心差分来意阶的高阶交错网格法,但其计算量和内存要求比代替,在如图2所示的一个交错网格中,U,B在节低阶有限差分法大幅度增加.本文使用的是 Virieux点1处计算;W,B在节点2处计算;R,T,M,L,(1986)1的交错网格差分公式,其差分精度为和M1,L1在节点3处计算;H,M2在节点4处计算(△2+△x2), Ikelle l t和 Yung$ K(199)21说这样()式离散为4明该算法可以糈确、稳定地应用于任总复杂变化的=U+B,(R年,-R…)十B,(I1+-H),wH,n-v++B++△(r}一rn)+By2(T+-+),ry=对++(n+2M4)+,△m+-RW(2)+T+,;+(L1+2M1)△tW+U2)+M2△t鲁←z以将震源函数直接赋在rx和n的节点上来模拟震源,即Soure,t)=R(t)t_(source_x, soure_x, t)=R(t.此外,在震源没有激发之前地下介质内部所质点都是静止的,包括质点振动速度为零和所受应力为零.因此,初始条件为图2一个交错树格Fig. 2 A st0,r(x,z,t)=0(t≤0)(3)对于自山表面边界条件,本文采用了模型空间其中,上标k为时间t的离散量,下标i,分别为x的上部加空气的条件,然后再采用吸收边界条件把和z的离散量.△,△x,△z分别为t,x,z的步长空气上边界的弹性波吸收掉,对于空气的下界面,则鉴于 Ricker子波对地震波的分辨率较其它子作正常的分界面来认识,从而获得和实际应用中波函数高,因此,震源选用 Ricker子波,其形式为所采用的地表放炮、地表接收达到一致的效果.R(t)=[1-2Lmf(t-to)] Jexp[-(rf(E to))2]有限差分法在求解波动方程时,会产生不期望式中f表示子波的主频,t为子波持续时间,t为f的数值频散或称网格频散,导致数值模拟结果分辨的函数,在模拟地下激发的地震波时,有限差分交错辛降低2所谓数值频散实质上是一种因离散化求网格中的正应力x和x=是在同一节点上赋值的,解波动方程而产生的伪波动,这种频散既不同于波而vr和vn在节点处的数值并没有参与计算,因此可动方程本身引起的频散,也不同于因波传播的速度1292地球物理学进展26卷频率和角度变化而引起的频散,它是有限差分方法果我们在这里仅分为三种类型:孔涧欠发育(致求解波动方程时所固有的本质特征,无法避免.为了密)、孔洞较发育(较致密)和孔洞发育〔较疏松).消除这种数值频散,前人进行了大量研究,他们的结论是基木一致的,即为了消除数值频散,在使用二阶表1地层框架内各层物性参数有限差分方法时,每个功率对应的波长至少必须使Table I The properties ot each layer用11个网格点,面四阶有限差分则可用二阶差分网in stratigraphie framewor格点数的一半.木文采用的稳定性条件,即计算稳定p(nu/s) v(m/s) (kg/m3)的离散参数区域为151:r4G界面2500三叠系)以Lmd2m≤1(2m-1)fT50界面下石炭系顶)~T46l730≤Ld2m≤T56界面(2m-1)!(巴楚组顶)~T5023102350其中,T74界囿(下奥陶系顶)~T56±8002470T78界面(蓬芠坝组颠)灬T7460002650界面以3702此外,在做波动方程的模型计算时,由于只能在对于试验工区的每条线,其长度均为1625m个有限区域进行,而弹性波在其计算边界上能量为了侏证该区域内均为满叠、孔洞的绕射波收敛以衰诚并不为零,从而产生很强的边界反射,这是模型及边界吸收较为干净,我们在模型的左边延长了计算时所不希望的,需要做人工吸收戌衰减处理,计1200m,右边延长了1575m(延长部分的地层接触算吸收边界的方法有许多种,一般情况下网格周围系并不代表真实情况),即模型总长度为1、4km,的耗散采用质点的速度和应力值乘上一个小于1深度范围为4000~6500m每条线均采用了同样的的因子来平滑的衰减;另种可能性是在网格周围观测系统,具体为:采用零相位对称雷克子波作为震使用低Q值来实现吸收作用,但是后者的吸收效果源(主频40玎z),单边放炮(共20炮,每炮128个检不如前者的吸收效果好,因此本文采用的是第一种波器接收)炮间距160m,检波器间距20m,8次叠方法,具体实珧时釆用了〔 eran等的吸收边界条加,最小偏移距0m,最大偏移距2540m,记录长件实现边界吸收1.6s,Δt=2ms,第一炮的坐标位置为(-1200,0)exp[-a2(I-i)2],1≤i≤1.基于差分稳定条件,取模型中最小介质速度2500m/s其中,I为给定的吸收边界带总节点数;i为吸收边为参考,得到的计算参数为:网格剖分间隔3m界内的节点编号;a为衰减系数,其值的选定与1的3m,时间延拓步长为0.27ms,每个波长(62.5m)大小密切相关,且对吸收效果的影响很大本文中Ⅰ内有20.8个网格.我们一共对33条线进行了正演取为40(即围绕计算区域,再向外设置宽度为40个模拟,图3展示了较为典型的 inline2585线(位于研网格的条形吸收区域)a=0.305/40,i取从0~40究工区的中心部位,地层接触关系以及孔洞体的分节点号.在条形吸收区域中的每个网格结点处,对全布相对比较复杂),从中可以大致看出二维正演模拟部的5个波场量(U,W,R,T,H),在每计算一个时的普遍情况与孔洞体波场响应特征的一般规律问步长后,都做少量的波场减表2展示∫该条线上各孔洞体的几何及物性参3模型计算数,其中④号属于欠发育(充填致密物)类型,①③⑥号属于较发育(充填较致密物)类型,②⑤号属于发在正演之前,我们统计了工区的速度、密度资育(充填较疏松物)类型.此外,建模过程中,我们还料,为了简化模型,并使得孔洞体的地震响应特征更考虑了线与线之间地层起伏渐变、孔洞大小渐变孔具有针对性,我们采用了背景为常速介质、蜜度参数洞物性参数渐变的过程,即所有建模因素都渐变由( arner公式计算的思路(表1).对于孔洞储集的而不是突变,最终保证了三维地震数据体的连体,根据钴井揭示和前面提到的孔隙度属性模拟结续性4期闵小刚,等;三维孔洞储层建模及其地震波场正演模拟1293表2各孔洞储集体的几何及其物性参数最大振幅,且绕射曲率与反射曲率相同,表明二者具Table 2 The geometry and propcrty parameters有不同的传播速度;每个绕射波可分为左右、上下f each cavity reservoir正、反向绕射分支,正向绕射分攴的相位与反射P孔润体尚度宽度vVP波相同,反向绕射分支的相位反转180°,与反射P(m)(m)(m/s)(m/s)(kg/m3)充填物屮心距界面(m)波的相反17396500029002503较致密105弹性波正演模拟生成的炮域合成记录被导人10113480027822470较疏松6FOCUS软件进行常规处理,包括速度谱拾取、动82784500029002500较致密85校、切除、增益、滤波、叠加、偏移和变面积、变密度显①575520030222530致密示等.由于在观测系统中只设计了8次覆盖,为了增⑤18115480027822470较疏松104加速度谱拾取精度,本文采用了由相邻的7个CDP2714850029002500较致密86道集混合构成一个超道集的办法,隔10个CDP拾图4是该模型在590ms时的波场快照,其波场取一个速度文件,并在拾取前先作常规NMO校正清晰,网格频散小,边界吸收较干净这表明,在求解切除,使得原始道集记录能量更强、信噪比史高二维弹性波动方程时,将差分解法和交错网格技术图5、图6分别是TK610井、TK623井所在位置处相结合,通过较好地使用吸收边界和稳定性条件可CDP道集记录及其速度谱,从图中可见各个反射界以显著削弱数值频散,有效地提扃计算精度.同时面的同相轴清晰可辨,对应的能量团集中,而在合成在保证一定的精度前提下,可以采用铰大的空间网记录上T7界面下孔洞所在位置处都有一明显的格间距,提高计算效率.从图巾还可看出,孔洞绕射同相轴,能量团也比较集中,由于TK610升比波和反射波在绕射点处相切,在切点处绕射波具有TK623井孔洞储集体更为发育(尽管二者振幅相1200-80004008001200160020002400280040004505500图3主测线2585地质模型Fig 3 Geclcgical model ol inline258-12004004008001200160045000.10.3图4主测线2585在590ms时波场快照Fig. Snapshot of wave field at 590ms in inlinc25851294地球物理学进展26卷Sg224-230CDP49 SE QNO250030003500400045000.240.60.60.80.8TE1.01. 01.21.2141.4图5TK610井所在位置处CDP道集记录及其速度谱ig. 5 The CDP gather and velocity spectrum at well TK610Sgl58-1640.2ONO250030003500400045000.0.40.60.60.8081.0:1.01212623(2565图6TK623井所在位置处CDP道集记录及共速度谱Fig 6 The CDP gather and velocity spectrum at well TK623当,在地质模型设计时均认为是充填较疏松物,但相消),使得T7界面断断续续,并在该界面下出现TK610井比TK623井在目的层段的厚度要大,横些“短反射”通过仔细分析,我们发现“短反射”中向展布范围也更宽测试产能更高),在合成记录上较强者出现的时间,与孔洞位置相对应.从该模型的孔洞对应的同相轴振幅更强、波形更连续,速度谱上偏移剖面上(图b)可以看到,所有的孔洞体均得到能量团也更强、更集中比铰好的偏移成像,并表现为负正负三个相位的图7是处理完后的叠加和偏移剖面.从叠加剖波形.但鉴于反射波地震勘探的纵向分辨率(大于面上(图a)可以比较清楚的看到孔洞体顶、底的两1/4波长),所有能检测出的孔洞或孔洞组合在叠加组强反射,但是二者之间出现具有绕射特征的弱波剖面上都叠合在T74界面下第一个波峰轴上,在偏代替了成层的背景,这些绕射波的相互下涉(相长、移剖而上都体现在T7界面下第一个黑椭圆体上,4期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1295601001401802202603003401001401802202603003400.00.00.20.2040.40.60.60.81014露9.926c+089.926e1081022e+091022e+09图?主测线2585对应的叠加剖而(a)和偏移剖面(b)Fig. 7 The stacking section (a) and migration section (b) of inline2585至」其下的“串珠”是孔洞的假象(孔洞组合与围岩(b)之间的多次波及绕射波经偏移归位后形成较强短反L2560L2580L2600射).由于T74界面反射波与沿纵横向有一定分布的孔洞(比较明显的是①、⑤号)的绕射波叠加,使得30001300040孔洞所在位置处T74界面反射波能量变弱,而孔洞底部与下覆围岩之间的正极性反射由于受T7界200600面反射波的负值性续至波叠加,也变得较弱.此外,B40080在构造高点上(④⑥号孔洞体所在位置,④号更为明显),由于孔洞引起的绕射与隆起引起的回转波的相6003600100互丁涉,T56和T7界面不连续,甚至在其间出现空白反射,而实际资料也有这种情况.这说明,对于塔3800800200和油田碳酸盐岩孔洞储集体这类特殊的油气储层来400040001400400说,在解释时遇到层位问断时,不能轻易地开断层,而应该综合考虑构造、孔洞绕射等地震波场特征.这图8联络测线2795实际剖面(a)和正演剖面(b)对比也是塔河油出勘探开发实践中发现“表层弱反射、内Fig 8 Comparison of the actual section (a) and幕强反射”地震特征对应有利储层的一个佐证forward modeling section (b)in crossline2795依据以上思路与工作流程,我们得到了33条沿主测线方向的二维偏移剖面,在并成三维体之前,为而正演模拟釆取的是8次叠加、道间距10m),正演了尽量消除线与线之问因地层起伏造成的不闭合,剖面较好的反映了实际情况.这不仅体现在层位的我们采取先把33条线的速度文件并成三维体,整体形态、分布比较相似(由于速度取了平均,各层的厚平滑后两用每条线对应的、平滑后的速度对其原始度不一致,但不影响我们的主要的,即对孔洞体地共中心点数据进行动校、叠加、偏移的办法,得到33震响应特征的分析),更重要的是,我们所设计的孔条新的二维偏移剖面,再并成一新的三维体,此外,泂体,其位置、形状规模、振幅强弱均与实际地震资由于正演模拟数据体线间距为50m,道间距为料具有相当好的对应关系,这表明我们在止演模拟10m,其空间采样率比实际资料低,本文编制了相和处理时的设计思想和参数选取原则是合理的,这应的算法在频率域对其进行插值,使线间距加密到结果也为我们进行后续工作提供了比较好的数据25m图8是联络测线2795在时间域的实际剖面源由于实质上是2.5维,不是基于面元的真三维,(a)和正演剖面(b)对比,排除二者在采集时的一些所以沿联络测线的剖面上同相轴有抖动现象,这是差异(如实际三维采集资料为24次叠加道间距25m,不可避免的)1296地球物理学进展26卷4结论与建议2]谢桂生,刘洪,赵连功,伪谱法地震波正演模拟的多线程并行计算[冂.地球物理学进展,2005,20(1);17~23.本文从三维角度,建立了与实际资料比较吻合Xie G S, Liu H, Zhao L G. Parallel Algorit hm based on the的孔洞储层模型,并进行了弹性波正演模拟,总结了multithread Technique for pseudospectal modeling of seismic地震响应规律,主要结论如下:wave[J]. Progress in Geophysics(in Chinese), 2005, 20(1)1)结合地震资料建立储层地质模型能够有效[3]刘财,张智,邯志刚,等.线性粘弹体屮地震渡场伪谱法模拟地降低储层模型的不确定性,提高建模精度.同时利技术[门].地球物理学进展。:005,20(3),640~644,用协克里金技术,用波阻抗反演的确定性信息约束Liu C, Zhang Z, Shao Z G, et aL. Pseudo-spectral forward储层的平面非均质性,可以实现孔隙度属性的确定modeling nf seismic wave in linear viscoelasic solid [J]P1性建模),2005,20(3):640~644.4」张智,刘财,邵志刚,伪谱法在常Q粘弹介质地震彼场模拟(2)在求解二维弹性波动方程时,将差分解法和中的应用效果[].地球物理学进展,2005,20(4):945交错网格技术相结合,通过较好地使用吸收边界和949,稳定性条件可以显著削弱数值频散,有效地提高计Zhang Z, Liu C, Shao G. The application of pseudo-spectral算精度.同时,在保证一定的精度前提下,可以采用forward modeling of seismic wave field in constant Q较大的空间网格间距,提高计算效率该方法具有广viscoelastic medium [J]. Progress in Geophysics, 2005,20(4)945~949泛的适用性5]盖良国,马在出,曹景忠,等.一阶弹性波方程交错网格高阶(3)孔洞储集体在偏移剖面上表现为负-正-负差分解法[冂].地球物理学报,200,43(3):411-~419三个相位的波形,但只能确定奥陶系风化面下第Dong LG, Maz T, Cao j Z, et al. A staggered-grid high个负相位是孔洞的发育位置,其下的“串珠”是孔洞order difference method of one-order elastic wave equation]的很象.风化面反射波与沿纵横向有一定分布的孔Chinese J. Geophys. (in Chinese),2000,43(3):411-419洞体的绕射波叠加,使得孔洞所在位置处风化面反[6]董艮国,马在田,曹景忠,一阶弹性波方程交错网格高阶差分解法稳定性研究[门].地球物理学报,200,43(6):856~射能量变弱,而孔洞底部与下覆闱岩之间的正极性反射由于受风化面透射波的负值性续至波叠加,也Dong L G, Ma Z T, Cao J Z. a study on stability of the变得较弱.该结论对于实际地震资料处理、解释以及staggcred-grid high-order difference method of first-order储层预测烃类检测具有普遍的指导意义elastic wave equation. Chinese J. Gcophys. in Chinese)2000。43(6);856~864本文不足之处主要有三点「7]萤良国.复杂地表条件下地震波传播数值模找1.勘探地球(1)在三维孔隙度建模时采用的是常规阻抗信物理进展,2005,28(3);187~194息(约束稀坑脉冲反演),其纵向分辨率不够(只能分Dong L G. Numerical simulation of seismic wave propagation辨1/4波长以上的孔洞储集体),在后续工作中将尝under complex near surface conditions [J]. Progress in试使用地质统计学反演的阻抗体来约束建模以大幅Exploration Geophysics(in Chinese), 2005, 28(3):187--194提高纵向分辨能力[8奚先,姚姚,二维随机介质及波动方程正演模拟[.石油地球物理劫探,2001,36(5):546-552(2)在弹性波正演模拟时采用的是2.5维思想XiX, Yao Y. 2D random media and wavc cquation forward口前正在研制全三维算法有望更逼真的还原孔洞储modeling [J]. Oil Geophysical Prospecting in Chinese集体的真实地下情况001,35(5);546~5523)考虑到缝的各向异性更为复杂,本文尚未涉9]奚先,姚姚,二维粘弹性随机介质中的波场特征分析[刀地及,对于碳酸盐岩中这类油气运移的重要通道,将在球物埋学进展,2004,19(3):608~615今后的工作中进一步研究Xi x, Yao Y. The analysis of the wave field characteristics in2-D viscoelastic random medium LJ. Progress in Geophysics参考文献( References):hinese),2004,19(3):608~[10]奚先,姚姚,二维横各向同性弹性随机介质中的波场特征1]刘文岭.大庆宋芳屯油田芳2区块地震与地质资料综合储层J.地球物理学进展,2004,19(4):924~932地质建模研究(博土论文儿D1.北京:中国地质大学,2002Xi x, Yao Y. The wave field characteristics of 2-DLiu W I. A Study on Reservoir Geological Modeling withclo].ESeismic and Well-log Data in Fang 2 Area of DaqingGeophysics(in Chinese), 2004,19(4):924-932ongfangtun Oil Field (doctor dissertation)(in Chi[111吴永国,贺振华,黄德济.串珠状溶涧模型介质波动方程正Beijing: CUG, 2002.演与偏移[.地球物理学进展,2008,23(2);539~5444期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1297Wu Y G, He Z H, Huang d J. Wave equation forward[19]肖玉茹,何峰煜,孙义梅,等,古洞穴型碳酸盐岩储层特征modeling and migration for heads-shaped corroded cave model研究一以塔河油田奥陶系古洞穴为例匚门。石油与天然气地EJ]. Progress in Geophysics(in Chinese), 2008, 23(2): 539质,200324(1):71~80.Xiao YR, He f Y, Sun Y M, et al. Reservoir charactetistics12]股文,印兴耀,吴国忧.高特度频率域弹性波方程有限差分of paleocave carhonates-a casc study of Ordovician paleocave方法及波场模拟[」.地球物理学报,2006,49(2):561in tahe oilfield, Tarim basin UJ]. Oil Gas Geology(inChinese),2003:24(1):71-80Yinw, YinXi,WuGC. The method of finite difference of[20]姚蟋,唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检high precision elastic wave equations in the frequcncy domain测性的理论研究[门.石油地球物理勘探,2003,38(6):623and wave-field simulation [J. Chinese J, Geophys.629Chinese),2006,49(2):561~568.Yao Y, Tang W B. Theoretical study of detectable cavern[13]马贵,土尚旭,宋建勇.频率域波动方程正演中的多网格Fractured reservoir in weathered Karst of dccp carbonatite迭代箅法[门].石油地球物理勘探,2010,45(1):15[J]. Oil Geophysical Prospecting(in Chinese), 2003,38(6):Ma ZG, Wang S X. Sun J Y. Multigrid iterative algorithm in623~629,domain wave equation forward modeling [J]. Oil [21] Levander A R. Fourth-order finite difference P-SvGeophysical Prospecting(in Chinese ) 2010, 45(1): 1-5seismograms []. Geophysics, 1988, 53(11): 25-36.[14]张金海,王卫民,赵连锋,等.傅里叶有限差分法三维波动[22] Crase e. Iligh- order( space and timc) finite-difference方程正演模拟[.地球物理学报,2007,50(6):1854A, In: 60th SEG Annual1862C].1990:987~991.Zhang j H, Wang W M, Zhao L F, et aL. Modeling 3-D [23] IkelleL T, Yung SK, Daube F. 2-D random media withscalar waves using the Fourier finite-difference method.ellipsoidal autocorrelation function [J]. Geophysics, 199350(6):1854[24]奚先.随机介质模型的构造及其波场模拟(博土论文)[D][15] Qin Z, Lt武汉:中国地质mproved NPML absorbing boundary condition in elastic waveXix. Construction and scismic wave field modeling ofmodeling [J]. Applied Geophysics, 2009. 6(2): 113-121random medium model doctor dissertation ) in Chinese)[16][D].Wwave equation [J. Geophysics, 1986, 51(1): 54-61[25]吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[17] Virieux J. P-Sv wave propagation in heterogeneous mediaLJ.地球物理学进展,2005,20(1):58-65velocity-strcss finite-difference methud LJ]. GeophysicsWu GC, Wang H Z. Analysis of numerical dispersion in1986,V51;889~901.wave-field simulation [J]. Progress in GreaphysiEs ( in18] Igel H, Riollet B. Mora P. Accuracy of staggered 3-D finiteChinese),2005,20(1):58~65difference grids for anisotropie wave propagation [J]. 62th [26] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflectingAnn, Internat, Mtg, Soc. ExpL. Geophys, Expboundary condition for discrete acoustic and elastic- wav1992,1244~1246.equation []. Gcophysics, 1985, 50(4): 705-708.
- 2021-05-06下载
- 积分:1
UPnP-av-AVArchitecture-v1-中文
1.概述和范围1.1.介绍本文档介绍了整体的 UPnP AV 的架构,为 UPnP AV 设备和服务的模板的基础。AV 架构定义 了通用的交互在 UPnP 控制点和 UPnP AV 设备之间。它是独立于任何特定的设备类型、内容格式和传输协议。它支持各种设备(如电视机、录像机、 CD/DVD 播放器/自动唱片点唱机、 机顶盒、音响系统、MP3 播放器、静态图像照相机、摄像机、电子相框 (EPFs),和PC) 。 AV 体系结构允许设备支持的格式的不同类型的娱乐内容 (如 MPEG2、MPEG4、 JPEG、MP3、Windows Media Architecture (WMA),位Control pointUPnP ActionsDevice 1Device 2Figure 1: Typical UPnP Device Interaction ModelAVControl pointAVUPnP ActionsDevice 1Device 2(Source)(Sink)Out-of- BandTranster ProtocolFigure 2: UPnP av Device Interaction Model大多数N∨方案涉及的内容(娱乐)流(即电影、歌曲、图片等)从一个到另一个设备。如图2所示,一个AV控制点与两个或更多作为源和汇的UPnP设备分别进行交互。虽然控制点使这两种设备的行为是协调的和同步的,但是设备本身使用非UPnP("的带外")的通信协议来彼此交互。控制点使用UPnP初始化和配置两个设备日的是想所需的内容从一个设备传送到弓一个设备。然而,由于内容使用"带外"传输协议传输,控制点是不直接参与实际内容传输的命令。控制点根据需要配置这些设备、触发内容流,然后退出这个过程。因此,传输开始后,控制点可以断开而不会扰乱内容流。换句话说,核心仟务(即传输内容)继续即使没有本控制点的参与正如上面的场景中所述,涉及三个不同的实体:控制点,媒体内容的来源(称为"Mediaserver")和接收器(叫做" Mediarenderer")。的内容。整个文裆的其余部分,所有三个实体的描述好像他们是独立在网络上的设备。虽然此配置可能很常见(即远程控制部录像机,和电视),但是AV体系结构支持这些实以仟意的组合,集成在单个物理设备内例如,一台电视可以视为呈现设备(如显示器)。然而,由于大多数电视包含内置调谐器,电视也可以作为服务尜改备因为它可以调到一个特定的渠道和发送该內容到达一个MediaRenderer[MR](即他的本地播放或者一些远端设备,如非调谐播放器)。同样地,许多MediaServers和/或 Media renderers还可能包括控制点功能。例如,MP3渲染器可能会在某些U控件(如一个小的显小屏和几个按钮),允许用户控制音乐的播放。3.播放体系架构StandardControl PointUPnPActions(UI Application)MediaServerMediaRendererDecoderContentDirectoryRendering ControlConnection ManagerOut-of-BandConnectionManagerAVTransporttransferprotocolTRAnsportTransfer ServerTransfer ClientSourceIsochronous or AsychronousSinkPush or pull图3般设备架构aka3-Box型最终用户最通常的任务就是把想要呈现的个人内容或者项目在一个指定的设备上呈现。如图3所示,内容回放情景包括三个不同的UPnP组件:一个 MediaServer[MS],一个Mediarenderer,和一个 UPnP Control point,这三个部分(每个都有明确定义的角色)一起工作完成任务。在这个过程中, MediaServer包含(娱乐)内容,这些内容是用户想要在Mediarenderer上渲染的(例如播放和听)。用户与控制点U|在本地交互,在 Media Server上选择想要的内容,和选择目标 Media RendererMediaServer上包含或者有接口对于各种各样的娱乐内容,这些内容存储在木地,或者是 MediaServer容易获取到的其他设备上。 MediaServer能够访问它的内容并且传输这些内谷到其他设各上通过使用某种网络传输协议。被 MediaServer公开的内容可能包含各种类型包括视频、音频、和/或静态图像。这些内容通过网络协议传输,数据形式也可以被Mediaserver和 Media Renderer所识別。 MediaServers可能支持一种或多种网络传输协议同时也有对应数据格式或者也能够将一种格式的数据转换成另一种给定的格式。例如一个Mediaserver包含一个vCR,CD/DVD播放器/自动点唱机,照相机,摄像机,PC机顶盒,卫星接收机,音频磁带播放机等等MediaRenderer通过网终从 MediaServer上获得内容。例如 MediaRenderer包含TV,立体,网终启用扬声器,MP3播放器,电子图片框架(EPF),控制音乐喷泉,等. Media rendere可以接收的薮据类型取决与他支持的传输协议与数据格式.·些 Mediarenderers可能只支持种内容(比如声音或者静止图片),这方面,其他 MediaRenderers可能支持更宽泛的内容类型包括视频、音频、静止图像控制点协调和管理着 Media Server和 Media renderer的操作,用户可以直接操作(如播放,停止,暂停)日的是完成想要的任务(如播放最喜欢的音乐)另外,控制点提供U(如果有)以便与用户交互,目的是控制和架作设备(选择想要的内容)控制点U的布局和暴漏他的功能是依赖于实现和控制点制造商的决定的。一些控制点的例」可能包拈一个有传统遙控器的电视,一个带有显示器的无线掌上电脑等注:以上描述谈及的设备“收/发数据都是基于家庭网络的”在AV架构上下文中,包含点对点连接如被用来连接ⅤCR和电视的RCA电缆。N架构视这种迕接为家庭网络的一小部分(如段)。参照 Connection Manager Service[CM]获取更详细的信息根据以上描述,AV体系架构由三个不同的执行定义好工作的部件组成。某些情况下,这些组件将会作为分开的,特别的设备存在。不管怎样,这不需要是特例。设备制造商可以自由的使用这些逻辑实体仼意组合,并装进个简单的物理设备中。这种情况下,组合设备中的单个组件可以使用标准UPnP控制协议(如基于HTTP的SOAP协议)或者使用一些私人通信机制进行交互。任何情况下,每个逻辑实体的功能保持不变。然而,在后面的这种(私人情况)情况,因为逻辑实体之冋的交互是私自的,独立的组件将不能够与其他没有安装私人协议的 UPnP AV设备交互。在图3中,控制点是唯的组件去启动UPnP动作。控制点请求配置 MediaServer和MediaRenderer目的是使想要的内容从 MediaServer传输到 MediaRenderer(使用一种Media Server和 MediaRenderer都支持的传输协议和数据格式, Media Server和 Media Renderer向控制点调用一些UPnP动作。不管怎样,如果需要 MediaServer和/或 Media Renderer可以向控制点发送事件通知目的是通知控制点 Media Server和/或 Media Renderer的内部状态发生了改变。Mediaserver和 Mediarenderer不会通过UPnP动作相互控制.然而,为∫传输数据Mediaserver和 Mediarenderer使用一种“带外”(如非UPnP)数据传输协议直接的传输內谷。控制点不涉及实际的数据传输他仅仅是根据需要配置Medⅰ a server和Medⅰ rEnderer启动传输数据的过稈。一旦传输开始,控制点就彻底退出数据传输过稈.不管怎样如果用户需要,控制点能够控制数据的流动通过调用各种各样的 TRAnsport动作,如停止、暂停、FF、重放、过、浏览等。另外,控制点也能控制显示端的各种渲染效果,如亮度、对比度、音量、平衡等31媒体服务Mediaserver被用于查找有效通过家庭网络的数据。 MediaServers包含非常广泛的设各种类,包括录像机、DVD播放器、卫星/电报接受器、电视调谐器、无线电调谐器CD播放器、音频磁带播放器、个人电脑、MP3播放器等。一个 MediaServer的主要目的是允许控制点去枚举(如浏览和查找)可以被用户用来去渲染的数据。 Mediaserver包含 Content DirectoryService[CDS], a ConnectionManager Service[CM],和个可选择的 AVTransport Service[AT(依赖与于支持的传输协议些 Mediaserver能够同时传输多个数据芇点的,如一个基于硬磁盘音频自动存储塔能够同时传输多个音频文件到网络.为了支持这种类型的Mediaserver, Connection Manager为每一个链接(即每个流)分配记录一个唯一的ConnectionS。这个 Connections允许一个第三方控制点去获取 Media Server的活动链接信息3. 1.1. Content Directory Service这个服务提供了组动作,这些动作允许控制点去枚举服务器提供到家庭网络上的数据。这个服务的主要动作是 Content Directory: Browse(.这个动作允许控制点去获取细节信息关于服务器可以提供的每一个数据节点。这个信息(即元数据)包含属性,如名字,作者,创建时间,尺寸等。另外,返回的元数据鉴定」服务器支持的传输协议与数据格式。控制点使用这些信息决定,给定的 Media renderer是否能够渲染这些格式数据。3.1.2. ConnectionManager Service这个服务被用来管理关联着一个特定设备的连接,这个服务 Media Server上下文)的主要动作是 Connection Manager: Prepare ForConnection(.当运行的时候,这个动作被控制点调用,给服务器个信息,让服务器为处理即将到来的传输准备自己。依赖于指定的传输协议和数据格式。这个动作可以返回一个 AVTransport服务的 Instanced,控制点可以使用去控制数据流(如停止,暂停,快进等)。下面描述,这个 Instanced被用来区别多个 AVTransport服务对象,每个⑩D都关联着一个特定的连接通向渲染端。多个(虚拟)的 AVTransport对象允许 MediaServer冋时支持多个渲染器。当控制点想要退出这个连接,他应该调用 Media Server的动作 Connection Manager: Connection Complete((如果运行着)来释放连接如果 ConnectionManager: Prepare For Connection(动作没有运行,控制点只能在给定的时间内支持一个简单的渲染器。这种情况下,控制点应该使用 Instanced=03.1.3. AVTransport Service这个(可选的)服务被控制点用来回放关联着指定 AVTransport的内容。这包含停止,暂停,搜索的能力等。依赖于所支持传输协议和/或数据格式,个 MediaServer会或不会运行这个服务。如果支持, MediaServer可以区别多个服务对象通过使用 Instanced,这个ID包含在每个的音视频传输动作中。新的音视频传输对象的创建通过 ConnectionManager的Connection Manager: Prepare For Connection(动作.,每个新的服务对象都会被分配一个新的对象|D3.2. MediaRendererMediaRenderer被用来渲染(如显小和播放声音)从家庭网络中获取的内容。这包含多和类型的设备,包括电视机、音响、音箱、便携式音频播放器,音乐控制饮水机等。它主要的特点是它允许控制点控制内容渲染的效果(如亮度、对比度、卷、静音、等等)。另外,依赖于被用来在网络上获取数据的传输协议, MediaRenderer也会允许用户控制数据流(如停止,暂停,搜索等)。 Media Renderer包括一个 Rendering Control Service[RCSConnection Manager Service,和一个可选的 AVTransport服务(依赖于支持那种传输协议)。为了支持渲染设备可以在同一时刻操作多个内容节点(如音频混音器如卡拉Ok设备)渲染控制和服务都包含多个这些服务的独立(逻辑)对象。这个服务的每个(逻辑)对象都绑定在一个传入连接上。这允许控制点独立于其他人控制传入内容。这些服务的多个逻辑对象通过唯一的 Instanced米区分。控制点的每个动作调用包含这个辨识正确对象的ID。3.2. 1 Rendering ControlService这个服务提供·列动作,允许控制点控制渲柒器如何的去显示一块块的内容。这包含显示特性,包括亮度、对比度、音量,静音等。 Rendering ControlServic支持并发的,动态的服务对象,这就允许一个"混合在一起"的一个或多个内容项的渲染器(如面中画窗口电视或音频混音器设备)。新的服务对象实例由 Connection Manager; Prepare ForConnection()动作创建。如果 Connection Manager;: PrepareForConnection()动作没有执行, Instanced的缺省值是0。3.2.2. Connection Manager service这个服务被用来管理关联设备的连接。在 Media Renderer的上下文中,这个服务的主要动作是 Connection Manager: GetProtocolInfo()。这个动作允许控制点去枚举 MediaRenderer支持的传输协议和数据类型。这个信息被用来预先确定·个 Media Renderer是否可以去渲染个指定的内容项。个 MediaRenderer也会执行可选的动作ConnectionManager;: Prepare ForConnection()。这个动作由控制点调用去给渲染器一个指示让他准备自己为」即将到来的传输。另外,这个动作分配一个唯一的 Connection|D,这可以使第三方控制点获取到 Media Renderer正在使用的连接的信息。而且,依赖于被使用的传输办议和数据格式,这个动作会返回一个唯一的 AVTransport InstanceID,控制点可以使用这个去控制内容流(如停止,暂停,搜索等)。(详细信息请参阅下面的 AVTransport章节)。最后,ConnectionManager: PrepareForConnection()动作也返回一个唯一的渲染控制实例1D,控制点可以通过这个1D控制关联的内谷的渲染效果如前面所述。当控制点想要退出连接,他应该调用渲染器的 Connection Manager: Connection Complete(动作(如果开启了)去释放连接。如果没开启,则 InstanceID应被设置成0。3.2.3. AVTransport Service这个可选择的服务被控制点用来控制相关内容。这包括播放、停止、暂停、搜索等的能力依赖于所支持的传输协议和/或数据格式,渲染器可能会也可能不会运行这个服务。为了支持 MediaRenderer可以同时控制多个设备项。 AVTransport service会支持这个服务的多个逻辑实例。如上文所述, AVTransport InstanceID由 ConnectionManager: Prepare ForConnection()动作分配,来区分多个服务实例。3, 3. Control point控制点协调着 Media server和 Mediarenderer的操作,通常通过控制点U与用户进行交互。一个控制点不是UPnP设各,即他作为一个网络上的设备,它不是明显的,因为它不提供任何UPnP服务。相反的,控制点调用其它UPnP设备上的服务目的是触发一些想要的行为,发生在远端设备上。以下描述了一般控制点的泛型规则,用于与多种运行中的 MediaServer和MediaRenderer进行交互。1.发现N∨改备: MediaServers和 Media Renderers使用UPnP发现机制在家庭网络中被现,2.找到所需的内容:使用服务器的 ContentDirectory: Browse()或 Content Directory: Search操作,所需的内容项就定位了。由 ContentDirectory: Browse(/ Search(返回的信息中,包含传输协议和效据格式,这就支持 MediaServer在家庭网络中传输数据3.获取渲染器的支持协议/格式:使用 MediaRenderer的Connection Manager; GetProtocollnfo(所支持的传输协议和数据格式都由 Media Renderer的返回值返回给控制点4.比较/匹配协议/格式:由 ContentDirectory返回的关于想要的内容项的协议/格式信息,与由 MediaRenderer的 Connection Manager: Get Protocollnfo()返回的协议/式信息相匹配控制点选择一个被 Media server和 Mediarenderer都支持的传输协议和数据格式5.配置服务器/渲染器:设备的 Connection Manager: Prepare For Connection()动作(如果启用)通知 MediaServer和 Mediarenderer一个退出/加入的连接即将被迫使用指定的传输协议和数据格式,这是之前选好的。依赖于选择的传输协议, MediaServer或者 MediaRenderer将会返回 AVTransport InstanceID。这个被用来与 AVTransport Service相结合(设备返回的 AVTransport InstanceID)去控制内容流(如 TRAnsport:Pay(), TRAnsport:stopAVTransport: Pause(), AVTransport:seek()等),另外,渲染器将会返回一个渲染控制实例1D,这个被控制点用来控制渲染效果。注:因为 Connection Manager;: PrepareForConnection是一个可选动作,这可能会有一种情况是 MediaServer和/或 Media Renderer都没运行 Connection Manager: PrepareForconnection()这种情况发生时 MediaServer和 Mediarenderer都没有返回一个 AVTransport InstanceID,控制点就使用 InstanceID=0去控制内容的流。详细信息参考 ConnectionManager和 TRAnsportService「AVT]l。6.选择需要的内容:使用 AVTransport服务(服务1D由 Server或者 Renderer返回)调用AVTransport: SetAVTransportUR)动作去确认需要被传输的内容项。7.启用传输内容:使用 AVTransport服务,用户调用一种想要的传输控制动作(如AVTransport: Play(), AVTransport: Stop(), AVTransport: Seek(*)8.调整呈现特性:使用 Media Renderer的 Rendering Control service[RCS],用户调用任何想要的控制动作(如调整亮度,对比度,声音,静音等)9.重复:近择下·内容:使用 TRAnsport: etAvtransportURI(或者 AVTransport:SetNextAVTRansportUR)动作,确认下一个内容项要被传送从同一个服务器传送到同个渲染器,根据需要重复。10.清理服务器/渲染器:当该公话终止和 Media Server和 Mediarenderer不再需要交互内容,Mediaserver和 Mediarenderer的 ConnectionManager: Connection Complete()动作被调用来关闭 Media Server的连接基于上面的交互顺序,下面的图表按时间顺序举例说明」控制点, MediaServer、MediaRenderer之间典垩的交互序列。Play back General Interaction DiagramMediaControMediaServerPointRendererCDS: Browse/ SearchContent ObjectsCM: GetProtocolInfo(pProtocol/Format List D>Choose MatchingProtocol and formatCM: PFepareF or ConnectionAVT InstancedCM:PrepareForConneption(AVT, RCS InstancelDsAVT: SetAVTransportURIOAvT:: PlaAny AVT flow controloperation as neededte. g. stop, pause, seekOutOf. BandContent transferRCS.: Setvolume0Any RCS renderingcontrol operation(e. g. vollute,brightness, contrastContent Transfermplete-t--- Repeat as NeededCM: ConnectionComdleteO)CM: onnection Complete(Figure 4 General Interaction Diagram of the 3-Box model3-Boⅹ模型是最综合的UPnP交互模型,它也可能把控制点和服务联合在一起,形成一综合性设各。这种情况被2-Bσⅹ模型解释如下。3.31.2-BoX模型:控制点与译码器standardUPnPActionsMedia serverControl point(UI ApplicationContent DirectoryOut-ofBandDecoderConnectionManagertransferprotocolTransfer ServerTransfer clientSourceIsochronous or AsychronousSinkPush or pullFigure 5 Control point with Decoder如图5所示,内容回放场景涉及到两个截然不同的UPnP组件:一个 Media Server,和个带有译码器的UPnP控制点。这两个组件(每个都是定义好的角色)一起工作米完成任务,在这种情况下, MediaServer中包含(娱乐)用户想要在设备上渲染的内容。用户与控制点通过U交互来定位和选择想要的在 Mediaserver上的内容,并且使用自己的译码器播放它。这个控制点系统的状态不会被其他控制点追踪,因为“带外”传输不会在服务器注册或者播放器设备由于缺少 AVTransport service。这种情况解释为最简单的 UPnP Ay交互模型。注:这种情况下,控制点只与 Media Server进行父互。注:“Sink"在这种情况卜是 MediaRenderer的背板,甚至不是UPnP设备.332.2-Box模型:控制点有内容StandardActionsControl PointMediaRendererWith Content(UI Application)Cutof-BarRenderingControlContentprotocolConnectionManagerTransfer serverAVTransportTransfer clientSourceIsochronous or AsychronousSinkPush or pullFigure 6 Control point With Content
- 2020-11-30下载
- 积分:1