登录
首页 » Others » 计算机操作系统 7套 期末考试题+ 答案详解 吐血上传

计算机操作系统 7套 期末考试题+ 答案详解 吐血上传

于 2020-06-29 发布
0 149
下载积分: 1 下载次数: 1

代码说明:

计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机操作系统 7套 期末考试题+ 答案详解 吐血上传计算机

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 雷达信号处理仿真序(MTI,MTD等)
    雷达信号处理程序,包括线性调频,匹配滤波,产生目标回波加噪声,回波积累,时域脉压,频域脉压,加窗脉压,相干积累,mti对消,mtd检测,cfar检测,欢迎下载
    2020-11-28下载
    积分:1
  • PG8139 修改 8139 网卡 物理 MAC地址
    PG8139 修改 8139网卡 物理 MAC地址,带cfg文件,带使用说明 .本人已测试 .
    2021-05-06下载
    积分:1
  • 用MFC实现折线图,柱形图,饼图
    根据MFC建立一个单文档,弹出对话框,在对话框中输入相应的数据,点击确定,在视图上出现相应的折线图,柱形图和饼图。
    2020-12-04下载
    积分:1
  • 心电信号脑电信号数据
    本人采集的心电信号、脑电信号数据,特别适合用来做数字信号处理……
    2020-12-06下载
    积分:1
  • 新浪微博点赞关注评论(C#源码)
    1、使用HTTP普通身份验证2、实现功能:登录,微博首页微博列表,发布,转发,评论,收藏3、使用BackgroundWorker实现微博列表翻页异步加载,微博列表获取的JSON格式的数据并进行反序列化4、内置网络收集到的21种皮肤5、供有兴趣的朋友参考(参考价值专用)6、转载请注明出处
    2020-11-27下载
    积分:1
  • 数字图像处理 MATLAB 大作业 代码及其说明文档
    中科院期末王伟强数字图像处理大作页,用MATLAB实现了冈萨雷斯书中的大部分程序,带有可视化的界面,可以调节参数,实现的功能简要概括如下:灰度变换与图像锐化,滤波(低通,高通,中值,维纳滤波),噪声模型,运动模糊,小波变换等等。本文件代码有详细的注释,并附有程序说明文档指导运行。本次作业获得了满分5分,个人感觉对于理解图像处理的知识点还是很有帮助的。
    2020-11-28下载
    积分:1
  • 基于Simulink的PI控制器在逆变器中的应用
    为了提高逆变器输出的动态和稳态性能, 建立了电压电流双环控制的逆变器系统模型, 并用S imulink软件对所建模型进行了仿真。结果显示在双环控制下, 逆变器的输出完全达到预期的目标, 证明了PI控制器在系统中的重要性和实用性
    2020-12-09下载
    积分:1
  • 机器人路径规划
    matlab环境中的机器人路径规划程序,经过调试可以直接使用。
    2020-12-01下载
    积分:1
  • 数字逻辑 课设计 VHDL 多功能数字钟(1)
    数字逻辑 课程设计 VHDL 多功能数字钟这个数字钟是我根据我老师的设计自己改编的,内部结构变化挺大的,功能也比较全。1、具有以二十四小时制计时、显示、整点报时、时间设置和闹钟的功能。2、设计精度要求为1秒。(一)计时:正常工作状态下,每日按24h计时制计时并显示,蜂鸣器无声,逢整点报时。(二)校时:在计时显示状态下,k=1,进入“小时”校准状态,之后按下“k=1”则进入“分”校准状态,继续按下“k=1”则进入“调秒”状态,第三次按下“k键”又恢复到正常计时显示状态。(1)“小时”校准状态:在“小时”校准状态下,显示“小时”的数码管闪烁,并以1HZ的频率递增计数。(2)“分”校准
    2020-12-03下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载