-
小波变换用于图像压缩的MATLAB源程序
小波变换在图像压缩中的应用,用MATLAB实现时因为MATLAB自带小波分析工具箱,所以编程比较简便,主要是算法要理解。这里附上了4个程序代码,1是局部压缩,2、3是两个压缩实例(EZW算法,让部分高频系数置零),4是阈值确定实例。载入图像时MATLAB软件自带的,因此不需要转换图像格式等语句。另外,一些函数的不理解的,可以查看help看函数的意义。因为实验结果上传起来比较费时,所以只给了源文件。仅供学习参考。希望能起到帮助作用
- 2020-12-06下载
- 积分:1
-
基于pscad的永磁直驱直驱风机
自己搭的永磁直驱风机模型,与网上下载的官方的相比结构更加清晰,做好了标注与说明,非常适合初做风机模型的人学习。保证能运行。
- 2020-11-27下载
- 积分:1
-
最新matlab仿真leach协议和另一种改进算法比较
在LEACH算法的基础上对簇头选择从节点剩余能量与节点分布位置进行了加权处理,仿真结果显示,较LEACH协议延长了网络生存时间,降低了网络总体能耗。
- 2020-12-05下载
- 积分:1
-
中景园电子0-96寸OLED模块资料V2.0.zip
中景园电子0-96寸OLED模块资料V2.0.zip中景园电子0-96寸OLED模块资料V2.0.zip中景园电子0-96寸OLED模块资料V2.0.zip中景园电子0-96寸OLED模块资料V2.0.zip
- 2021-05-06下载
- 积分:1
-
stm32f042复用can通信
stm32f042 28/20pin单片机利用can需要引脚复用。can通信
- 2020-11-28下载
- 积分:1
-
动态网页大作业
动态网页大作业
- 2021-05-06下载
- 积分:1
-
RTCM3.3协议全
全新RTCM3.3协议完整版RTCM STANDARD 10403.3DIFFERENTIAL GNSS(GLOBAL NAVIGATION SATELLITE SYSTEMS)SERVICES – VERSION 3DEVELOPED BYRTCM SPECIAL COMMITTEE NO. 104OCTOBER 7, 2016COPYRIGHT©2016 RTCMRadio Technical Commission for Maritime Services1611 N. Kent St., Suite 605Arlington, Virginia 22209-214RTCM Paper 141-2016-SC104-STD000ocRTCMco00c30RTCM 10403. 3, Differential GNSS Global Navigation Satellite Systems)Services- Version 3, October 7, 2016This standard (referred to as version 3 has been developed by rtCm special Committee 104 as a moreefficient alternative to the standards entitled rtcm recommended standards for diffe rentialRecommended Standards for Differential gNss Global Navigation Satellite Systems Service, Version 2.x(Current version is 2. 3, now designated as RTCM 10402. 3. Service providers and vendors represented onthe SC104 Committee wanted a new standard that would be more efficient, easy to use, and more easilyadaptable to new situations. The main complaint was that the version 2. x parity scheme, which useswords with 24 bits of data followed by 6 bits of parity, was wasteful of bandwidth. Another complaint wasthat the parity was not independent from word to word. Still another was that even with so many bitsdevoted to parity the actual integrity of the message was not as high as it should be. Plus, 30-bit wordsare awkward to handle. the new standard version 3 is intended to correct these weaknessesUnlike Version 2. x, this standard does not include tentative messages The messages in Version 3 haveundergone testing for validity and interoperability and are considered to be permanent. amendments tothe standard may change the meaning of reserved bits or provide additional clarifying text, but no changeswill be made in the data fields. Changes will require new messages to be developed. In addition to themessages described in the current standard the committee continues to develop new messages whichare described in separately published amendments and periodically gathered into a new edition of thestandard. RTCM 10403x for dgNSS services is proving useful in supporting highly accurate differentialand kinematic positioning as well as a wide range of navigation applications worldwideNote that Version 3 messages are not compatible with Version 2. x. Since many receivers have beendesigned and programmed for use with Version 2. x messages, rtCm is maintaining both standards0402 3 and 10403, 3 as" standardsVersion 3.0The initial edition consisted primarily of messages designed to support real-time kinematic (RTK)operations. The reason for this emphasis is that rtk operation involves broadcasting a lot of informationand thus benefits the most from an efficient data format. Version 3.0 provided messages that supportGPS and gloNaSs rTK operations including code and carrier phase observables antenna parametersand ancillary system parametersVersion 3. 1(RTCM Standard 10403.1:The next edition, Version 3. 1 (RTCM Standard 10403. 1), incorporated GPS Network Corrections, whichenable a mobile receiver to obtain accurate rtk information valid over a large area. In addition, new GPSand GLoNaSS messages provide orbital parameters to assist in rapid acquisition a Unicode text messageis also provided for the transmission of textual data. Finally a set of messages are reserved for vendorswho want to encapsulate proprietary data in their broadcasts the gps Network Corrections enable amobile receiver to obtain accurate rtk information valid over a large area. the network rtk correctioninformation provided to a rover can be considered as interpolated corrections between the referencestations in the rtk network this interpolation is not perfect and varies with the actual conditions of theatmosphere. A residual interpolation error has to be expected. With sufficient redundancy in the RtKnetwork, the network server process can provide an estimate for residual interpolation errors. Suchquality estimates may be used by the rover to optimize the performance of rtk solutions The values maybe considered by the rover as a priori estimates only with sufficient tracking data available the rovermight be able to judge residual geometric and ionospheric errors itselfVersion 3. 1. Amendment 1:Amendments 1 was an extensive addition that adds rtcm messages containing transformation data andinformation about Coordinate reference Systems. For rtCm data supporting a rtk service, coordinatesare measured within the itrf or a regional realization surve yors and other users of rtk services mustnormally present their results in the coordinates of local datums. Therefore, coordinate transformationsare necessary. by having RTCM messages that contain transformation data and information about theCoordinate reference systems the users of the rtk service can obtain their results in the desired datumwithout any manual operations. the rtk service providers can then ensure that current information forthe computation of the transformations is always used. the convenience of this method will promote theacceptance of rtK servicesVersion 3. 1. amendment 2:Amendment 2 added residual error messages to support the use of Non-Physical or Computed referenceStations in a network rtk environmentVersion 3. 1. amendment 3:Amendment 3 addressed differences in the way gnss receiver manufacturers have implemented carrierphase encoding of some Version 3 messages so that carrier phase observations are in phase for all carrierphases of a specific frequency i e. they correct for quarter cycle phase shifts. others retain the quartercycle offset between the carrier phase observations in the data. this amendment documents the waydifferent manufacturers have handled the phase shift issue and prescribes a uniform approach for futureproducts.∨ersiⅰon3.1, Amendment4:Amendment 4 added sections 3.5.13 on glONASS Network rtK Correction Messages and 3.5. 14 on FKPNetwork Rtk Correction Messages Related revisions were also made elsewhere in the document.Version 3. 1. amendment 5Amendment 5 added section 3. 5. 12 on State Space Representation related revisions are also madeelsewhere in the document, along with some editorial correctionsVersion 3. 2(RTCM Standard 10403.2)Version 3.2 consolidates Version 3. 1 and all five amendments into a new edition, and it adds MultipleSignal Messages (MSM)as well. the Multiple Signal Message (MSm)format generates receiverobservables in the same way for all included satellite systems. the messages include compact and fullmessages for Pseudorange, PhaseRange, Carrier to Noise Ratio (standard and high resolution), andPhaseRangeratea table near the beginning of the standard lists which messages were included in each separate editionand amendment, so it should not be necessary for users to refer to older versions. Multiple signalMessages are a generic format that will be followed for all GNSs systems. version 3 originally consisted ofmessages for GPS and GLONASS, each in their own format Now with the imminent addition of signals forBeiDou, Galileo, and QZSS, as well as new signals provided by modernized GPS and GloNASS satellitesthe need for a consistent generic format became evident. service providers and users are urged to migrateto the MsM messages to make it easier to accommodate new gNss services(See The RTCM Multiple Signal Messages: A New Step in GNSS Data Standardization")Another newmessage is the gloNaSS Bias Information message. This message provides information which is intendedto compensate for the first-order inter-frequency phase range biases introduced by the reference receivercode- phase biasVersion 3.2, Amendment 1:Added Galileo F/NAv Satellite Ephemeris Data(msg. 1045 )and Bds MSM(msgs. 1121-1127)Version 3.2 amendment 2Added qzss ephemeris(msg. 1044 )and QZss MSm (msgs. 1111-1117Version 3. 3(RTCM Standard 10403.3)This new edition adds Satellite-Based Augmentation System Multiple Signal Messages to previouslydopted messages for GPS, GLONASS, Galileo, and QzssA new ephemeris message has been added for BeiDou(BDS)and a new I/NAV ephemeris message hasbeen added for Galileo. The new edition also reserves 100 messages be used exclusively by sc104 fornew message developmentFinally, the new edition makes consolidates previous amendments and makes numerous editorialImprovementsNavstar GPS Service, Version 2. x. Service providers and vendors represented on the scco000c30z1O2co00c30Contentsco00c30
- 2020-06-27下载
- 积分:1
-
使用CC2591作为CC2530的功放
使用CC2591作为CC2530的功放, CC2591 PAThe absolute maximum ratings and operating conditions listed in the CC2530 datasheet [1]and the CC2591 datasheet [4] must be followed at all times. Stress exceeding one or more ofthese limiting values may cause permanent damage to any of the devicesNote that these characteristics are only valid when using the recommended register settingspresented in Section 4.6 and in Chapter 8, and the CC2530 - EM reference designOperating Frequency240524835MHzOperating Supply Voltage2036VOperating Temperature-40CTC=25C, VDD=3.0V, f=2440 MHz if nothing else is stated. All parameters are measuredon the CC2530-Cc2591EM reference design [11] with a 50 Q2 loadReceive CurrentWait for sync, -90 dBm input levelWait for sync, -50 dBm input level24mATXPOWER OXE5166mATXPOWER OXD5149mATXPOWER OXC5138mATXPOWER OXB5127mATransmit currentTXPOWER OXA5115ATXPOWER = 0X95100mATXPOWER = 0X8594ATXPOWE=0×75mATXPOWE=0×6579APower Down Current PM2UAISTRUMENTSPage 3 of 19SWRA308ATC=25C, Vdd=3.0V, f= 2440 MHz if nothing else is stated. All parameters are measuredon the CC2530-CC2591 EM reference design with a 50 Q2 loadReceive Sensitivity HGM 1 %PER, IEEE 802. 15.4[6] requires -85 dBm-988dBmReceive Sensitivity LGM1 PER, IEEE 802. 15.4 [6] requires -85 dBm-90.4dBmSaturationlEEE 802.15. 4 [6] requires-20 dBm10dBmWanted signal 3 db above the sensitivity levelIEEE 802.15.4 modulated interferer at ieee 802.15.4 channelsInterferer Rejection+5 MHz from wanted signal, IEEE 802. 15. 4 [6] requires 0 dBdB+10 MHz from wanted signal, IEEE 802. 15. 4 [6] requires 30 dB49dB+20 MHz from wanted signal wanted signal at- 82d BmdBdue to in the external lna and the offset in cc2530 the rssi readouts from cc2530CC2591 is different from rssi offset values for a standalone cc2530 design the offsetvalues are shown in table 4.4High Gain Mode79LoW Gain mode67Real rssi Register value-Rssl offsetISTRUMENTSPage 4 of 19SWRA308ATc=25C, Vdd=3.0V, f=2440 MHz if nothing else is stated All parameters are measuredon the CC2530-CC2591 EM reference design with a 50 Q2 load Radiated measurements aredone with the kit antennaRadiated Emissionwith TXPOWer Oxe5Conducted 2. RF (FCC restricted band)-462|dBmConducted 3. RF(FCC restricted band46.5 dBmComplies withFCC 15.247. SeeChapter 7 for moredetails about regulatoryRadiated 2.RF(FCC restricted band)42.2dBmrequirements andcomplianceIEEE 802.15.4[6]requires max.35%%Measured as defined by IEEE 802.15. 4 6TXPOWER OxE5. f= EEE 802.15. 4 channels13TXPOWER= OXD5. f= EEE 802.15.4 channelsTXPOWER= OXC5 f= EEE 802.15.4 channelsMax error∨ ectorTXPOWER OxB5 f= IEEE 802.15. 4 channelsMagnitude(EVM)TXPOWER OxA5. f= IEEE 802.15.4 channelsTXPOWER 0X95. f= IEEE 802. 15.4 channels643333%%%%%%%TXPOWER= 0x85. f= iEEE 802. 15.4 channelsTXPOWER =0x75 f= IEEE 802. 15.4 channels%TXPOWER= 065. f= iEEE 802. 15.4 channelsThe RF output power of the CC2530- CC2591 EM is controlled by the 7-bit value in theCC2530 TXPOWER register. Table 4.6 shows the typical output power and currentconsumption for the recommended power settings The results are given for Tc= 25 C, Vdd3.0V and f= 2440 MHz, and are measured on the cC2530-CC2591 EM reference designwith a 50 Q2 load. For recommendations for the remaining CC2530 registers, see Chapter 8 oruse the settings given by SmartRF StudioOXE520166OxD519149OxC18138OxB517127OxA5161150x95141000x8513940X75860x651079Note that the recommended power settings given in Table 4.6 are a subset of all the possibleTXPOWER register settings. However, using other settings than those recommended mightINSTRUMENTSPage 5 of 19SWRA308Aresult in suboptimal performance in areas like current consumption, EVM, and spuriousemissionTc=25C, Vdd=3.0V, f=2440 MHz if nothing else is stated All parameters are measuredon the CC2530-CC2591EM reference design with a 50 32 load2221-2V201918171611121314151617181920212223242526251510OxE5OxC5OxA50X850x65540-30-20-1001020304050607080ISTRUMENTSPage 6 of 19SWRA308A98Avg 3.6VAva 3vAvg 2V110111213141516171819202122232425261023.6V-1062V-110-40-30-20-100102030405060708070604020-Wanted signal at:-82 dBm10ISTRUMENTSPage 7 of 19SWRA308ACC2530-CC2591EM High Gain ModeC C2530-CC2591EM Low Gain Mode- CC2530EM40000-100110100908070-60-50-40-30-20-100The IEEE standard 802.15. 4 [8] requires the transmitted spectral power to be less than thelimits specified in table 4.7If-fc>3.5 MHz-20 dB-30 dBmThe results below are given for Tc=25 C, Vdd=3.0V and f= 2440 MHz, and are measuredon the CC2530-CC259 1EM reference design with a 50 Q loadIEEE absoluteChannel 182432.52435243752442524452447.5ISTRUMENTSPage 8 of 19SWRA308AOnly a few external components are required for the CC2530-CC2591 reference design. Atypical application circuit is shown below in Figure 5.1. Note that the application circuit figuredoes not show how the board layout should be done. The board layout will greatly influencethe RF performance of the CC2530-CC2591EM. TI provides a compact CC2530CC2591 EM reference design that it is highly recommended to follow. The layout, stack-upand schematic for the CC2591 need to be copied exactly to obtain good performance. Notethat the reference design also includes bill of materials with manufacturers and part numbersL102 L10=TI INF inductorVDD13cc2530LA 1RF PANTCC2591 RF NFNPA EN(P1 1)i工工I NA FNP:1HGM ENPO 7)T:1Proper power supply decoupling must be used for optimum performance. In Figure 5.1, onlythe decoupling components for the CC2591 are shown. This is because, in addition todecoupling, the parallel capacitors C11, C101, and C131 together with, L101, L102, TL11TL101 and TL131 also work as RF loads. These therefore ensure the optimal performancefrom the CC2591. C161 decouples the AvDD blAs power.The placement and size of the decoupling components, the power supply filtering and thePCB transmission lines are very important to achieve the best performance Details about theimportance of copying the CC2530-CC2591EM reference design exactly and potentialconsequences of changes are explained in chapter 6The RF input/output of CC2530 is high impedance and differential. The CC2591 includes abalun and a matching network in addition to the PA, LNa and RF switches which makes theinterface to the CC2530 seamless. Only a few components between the CC2530 andCC2591 necessary for RF matching For situation with extreme mismatch(VSWR 6: 1 till 12: 1out-of-band as shown in Figure 6.2) it is recommended to include all the components asshown in Figure 5.1ISTRUMENTSPage 9 of 19SWRA308ANote that the PCB transmission lines that connect the two devices also are part of the RFmatching. It is therefore important to copy the distance between the devices, the transmissionlines and the stack-up of the PCB according to the reference design to ensure optimumperformanceThe network between the CC2591 and the antenna(L111, C112, C111 C113 and L112matches the CC2591 to a 50 2 load and provides filtering to pass regulatory demands. C111also works as a dc-blockR151 is a bias resistor the bias resistor is used to set an accurate bias current for internaluse in the cc2591The TI reference design contains two antenna options. As default, the Sma connector isconnected to the output of CC2591 through a 0 Q2 resistor. This resistor can be soldered offand rotated 90 clockwise in order to connect to the PCB antenna, which is a planar invertedF antenna(PIFA). Note that all testing and characterization has been done using the SMAconnector. The PCB antenna has only been functionally tested by establishing a link betweentwo EMs. Please refer to the antenna selection guide [6] and the Inverted F antenna designnote [7 for further details on the antenna solutionsISTRUMENTSPage 10 of 19SWRA308A
- 2020-11-30下载
- 积分:1
-
阿里Java开发完整版手册
阿里内部Java工程师所遵循的开发规范,涵盖编程规约、单元测试规约、异常日志规约、MySQL规约、工程规约、安全规约等,这是近万名阿里Java技术精英的经验总结.还包含java基础泛型、反射、注解,java高级特性、设计模式等介绍等
- 2020-12-10下载
- 积分:1
-
springboot+mybatis+maven+mysql
springboot+mysql+maven+mysql+jdk1.8实现增删改查 web端实现登录和注册
- 2021-05-07下载
- 积分:1