登录
首页 » Others » 三相电压型逆变电路MATLAB仿真报告

三相电压型逆变电路MATLAB仿真报告

于 2020-06-22 发布
0 274
下载积分: 1 下载次数: 4

代码说明:

原理:三个单相逆变电路可组合成一个三相逆变电路。三相桥式逆变电路基本工作方式是180°导电方式。 同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差120 °,任一瞬间有三个桥臂同时导通。每次换流都是在同一相上下两臂之间进行,也称为纵向换流

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matlab数据降维工具箱
    Matlab Toolbox for Dimensionality Reduction Matlab数据降维工具箱,包括几乎所有的数据降维方法:PCA、LDA、ICA、MDS、Isomap、LandmarkIsomap、LLE、LLC、Laplacian、HessianLLE、LTSA、DiffusionMaps、KernelPCA、KernelLDA、SNE、NPE、LPP、SPE、LLTSA、SPCA、CCA、MVU、FastMVU、AutoEncoder、AutoEncoderEA
    2020-06-14下载
    积分:1
  • 脉冲激光加热有限元分析
    基于ANSYS有限元分析的脉冲激光加热的建模与仿真命令流
    2020-11-28下载
    积分:1
  • 两块stm32 spi通信,使用DMA
    本例程主要是用于两块stm32之间的spi通信,用到了DMA节省了cpu的的时间,大大提高了cpu的利用率
    2021-05-06下载
    积分:1
  • Lensviewgxsj.zip
    LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库
    2020-11-04下载
    积分:1
  • 【Python】雷电模拟器脚本说明[附代码].doc
    【实例简介】最近用雷电模拟器做脚本,感觉这个模拟器还是非常强大的。结合python,写一些脚本,无往而不利,特来与大家分享一下自己的所得
    2021-11-30 00:46:24下载
    积分:1
  • jquery 3.2.1chm 手册
    jquery 3.2.1 chm 中文手册速查表。可在线调试代码。jQuery+3.1+参考手册+速查表+chm格式.rar
    2021-05-06下载
    积分:1
  • 毫米波雷达数据处理得到运动目标
    一个处理毫米波雷达的程序,用于得到毫米波雷达原始数据中的运动目标
    2020-12-06下载
    积分:1
  • RTCM3.3协议全
    全新RTCM3.3协议完整版RTCM STANDARD 10403.3DIFFERENTIAL GNSS(GLOBAL NAVIGATION SATELLITE SYSTEMS)SERVICES – VERSION 3DEVELOPED BYRTCM SPECIAL COMMITTEE NO. 104OCTOBER 7, 2016COPYRIGHT©2016 RTCMRadio Technical Commission for Maritime Services1611 N. Kent St., Suite 605Arlington, Virginia 22209-214RTCM Paper 141-2016-SC104-STD000ocRTCMco00c30RTCM 10403. 3, Differential GNSS Global Navigation Satellite Systems)Services- Version 3, October 7, 2016This standard (referred to as version 3 has been developed by rtCm special Committee 104 as a moreefficient alternative to the standards entitled rtcm recommended standards for diffe rentialRecommended Standards for Differential gNss Global Navigation Satellite Systems Service, Version 2.x(Current version is 2. 3, now designated as RTCM 10402. 3. Service providers and vendors represented onthe SC104 Committee wanted a new standard that would be more efficient, easy to use, and more easilyadaptable to new situations. The main complaint was that the version 2. x parity scheme, which useswords with 24 bits of data followed by 6 bits of parity, was wasteful of bandwidth. Another complaint wasthat the parity was not independent from word to word. Still another was that even with so many bitsdevoted to parity the actual integrity of the message was not as high as it should be. Plus, 30-bit wordsare awkward to handle. the new standard version 3 is intended to correct these weaknessesUnlike Version 2. x, this standard does not include tentative messages The messages in Version 3 haveundergone testing for validity and interoperability and are considered to be permanent. amendments tothe standard may change the meaning of reserved bits or provide additional clarifying text, but no changeswill be made in the data fields. Changes will require new messages to be developed. In addition to themessages described in the current standard the committee continues to develop new messages whichare described in separately published amendments and periodically gathered into a new edition of thestandard. RTCM 10403x for dgNSS services is proving useful in supporting highly accurate differentialand kinematic positioning as well as a wide range of navigation applications worldwideNote that Version 3 messages are not compatible with Version 2. x. Since many receivers have beendesigned and programmed for use with Version 2. x messages, rtCm is maintaining both standards0402 3 and 10403, 3 as" standardsVersion 3.0The initial edition consisted primarily of messages designed to support real-time kinematic (RTK)operations. The reason for this emphasis is that rtk operation involves broadcasting a lot of informationand thus benefits the most from an efficient data format. Version 3.0 provided messages that supportGPS and gloNaSs rTK operations including code and carrier phase observables antenna parametersand ancillary system parametersVersion 3. 1(RTCM Standard 10403.1:The next edition, Version 3. 1 (RTCM Standard 10403. 1), incorporated GPS Network Corrections, whichenable a mobile receiver to obtain accurate rtk information valid over a large area. In addition, new GPSand GLoNaSS messages provide orbital parameters to assist in rapid acquisition a Unicode text messageis also provided for the transmission of textual data. Finally a set of messages are reserved for vendorswho want to encapsulate proprietary data in their broadcasts the gps Network Corrections enable amobile receiver to obtain accurate rtk information valid over a large area. the network rtk correctioninformation provided to a rover can be considered as interpolated corrections between the referencestations in the rtk network this interpolation is not perfect and varies with the actual conditions of theatmosphere. A residual interpolation error has to be expected. With sufficient redundancy in the RtKnetwork, the network server process can provide an estimate for residual interpolation errors. Suchquality estimates may be used by the rover to optimize the performance of rtk solutions The values maybe considered by the rover as a priori estimates only with sufficient tracking data available the rovermight be able to judge residual geometric and ionospheric errors itselfVersion 3. 1. Amendment 1:Amendments 1 was an extensive addition that adds rtcm messages containing transformation data andinformation about Coordinate reference Systems. For rtCm data supporting a rtk service, coordinatesare measured within the itrf or a regional realization surve yors and other users of rtk services mustnormally present their results in the coordinates of local datums. Therefore, coordinate transformationsare necessary. by having RTCM messages that contain transformation data and information about theCoordinate reference systems the users of the rtk service can obtain their results in the desired datumwithout any manual operations. the rtk service providers can then ensure that current information forthe computation of the transformations is always used. the convenience of this method will promote theacceptance of rtK servicesVersion 3. 1. amendment 2:Amendment 2 added residual error messages to support the use of Non-Physical or Computed referenceStations in a network rtk environmentVersion 3. 1. amendment 3:Amendment 3 addressed differences in the way gnss receiver manufacturers have implemented carrierphase encoding of some Version 3 messages so that carrier phase observations are in phase for all carrierphases of a specific frequency i e. they correct for quarter cycle phase shifts. others retain the quartercycle offset between the carrier phase observations in the data. this amendment documents the waydifferent manufacturers have handled the phase shift issue and prescribes a uniform approach for futureproducts.∨ersiⅰon3.1, Amendment4:Amendment 4 added sections 3.5.13 on glONASS Network rtK Correction Messages and 3.5. 14 on FKPNetwork Rtk Correction Messages Related revisions were also made elsewhere in the document.Version 3. 1. amendment 5Amendment 5 added section 3. 5. 12 on State Space Representation related revisions are also madeelsewhere in the document, along with some editorial correctionsVersion 3. 2(RTCM Standard 10403.2)Version 3.2 consolidates Version 3. 1 and all five amendments into a new edition, and it adds MultipleSignal Messages (MSM)as well. the Multiple Signal Message (MSm)format generates receiverobservables in the same way for all included satellite systems. the messages include compact and fullmessages for Pseudorange, PhaseRange, Carrier to Noise Ratio (standard and high resolution), andPhaseRangeratea table near the beginning of the standard lists which messages were included in each separate editionand amendment, so it should not be necessary for users to refer to older versions. Multiple signalMessages are a generic format that will be followed for all GNSs systems. version 3 originally consisted ofmessages for GPS and GLONASS, each in their own format Now with the imminent addition of signals forBeiDou, Galileo, and QZSS, as well as new signals provided by modernized GPS and GloNASS satellitesthe need for a consistent generic format became evident. service providers and users are urged to migrateto the MsM messages to make it easier to accommodate new gNss services(See The RTCM Multiple Signal Messages: A New Step in GNSS Data Standardization")Another newmessage is the gloNaSS Bias Information message. This message provides information which is intendedto compensate for the first-order inter-frequency phase range biases introduced by the reference receivercode- phase biasVersion 3.2, Amendment 1:Added Galileo F/NAv Satellite Ephemeris Data(msg. 1045 )and Bds MSM(msgs. 1121-1127)Version 3.2 amendment 2Added qzss ephemeris(msg. 1044 )and QZss MSm (msgs. 1111-1117Version 3. 3(RTCM Standard 10403.3)This new edition adds Satellite-Based Augmentation System Multiple Signal Messages to previouslydopted messages for GPS, GLONASS, Galileo, and QzssA new ephemeris message has been added for BeiDou(BDS)and a new I/NAV ephemeris message hasbeen added for Galileo. The new edition also reserves 100 messages be used exclusively by sc104 fornew message developmentFinally, the new edition makes consolidates previous amendments and makes numerous editorialImprovementsNavstar GPS Service, Version 2. x. Service providers and vendors represented on the scco000c30z1O2co00c30Contentsco00c30
    2020-06-27下载
    积分:1
  • pq法实现谐波电流检测
    通过pq分解法,结合α和β变换在matlab/simulink里面可得到谐波电流波形(适合电能质量的作业)
    2020-12-10下载
    积分:1
  • project 进度计划 各楼栋总进度计划
    project项目案例(完整的过程),各楼栋总进度计划-00.mpp
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 105722会员总数
  • 0今日下载