登录
首页 » Others » ABAQUS切削模拟(两个inp文件,包括二维切削和三维铣削)

ABAQUS切削模拟(两个inp文件,包括二维切削和三维铣削)

于 2020-06-18 发布
0 227
下载积分: 1 下载次数: 1

代码说明:

用ABAQUS做的两个切削模拟,分别模拟了二维切削和三维铣削过程,文件类型为inp文件。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • cec2013测试集源码
    Congress on Evolutionary Computation (cec)2013年的资料,java版和matlab版还有c版的,matlab的需要C++编译器才行,是混合编程的,具体看readme.外加DRMA-LSCh-CMA的源码一份。觉得不错请回来评论一下,谢谢。
    2020-12-11下载
    积分:1
  • RISC_CPU工 verilog实现
    【实例简介】基于FPGA的16位RISC_CPU设计__源自曹晓亮的博客
    2021-11-07 00:39:16下载
    积分:1
  • CNN人脸识别签到系统源文件+报告论文.rar
    本项目着手实现了一个基于卷积神经网络的人脸识别签到系统,该系统能够进行人脸的采集,并将不同人脸对应的学号(工号)姓名信息存储于数据库,利用CNN卷积神经网络对人脸进行训练;人脸签到模块能实时识别当前人脸,识别成功会语音播报某学号(工号)某同学(员工)签到成功,并在系统界面输出显示签到信息同时自动更改当前对象的签到状态;缺勤模块可以查看当前未签到成员信息,可以重置所有成员的签到状态。项目特点:1、基于神经网络,系统具有学习能力,理论上给它喂的数据越多,它就可以识别越多的人而且准确度会不断提高。 2、利用多线程将ui界面与功能代码分开,在显示界面的同时还能进行后台的运算,防止卡顿提升使用体验,
    2021-05-06下载
    积分:1
  • 华为性格测试(华为网测)
    华为性格测试(华为网测)
    2020-06-01下载
    积分:1
  • 线性调频信号的matlab代码.m
    【实例简介】这个代码是一个matlab编写的代码,他说明了LFM的模糊函数是怎么一回事
    2021-12-04 00:34:45下载
    积分:1
  • 高斯和拉普拉斯源码(laplacian of Gaussian).rar
    【实例简介】高斯函数,拉普拉斯函数源码,很好的! Log,锐化,平滑 形态学的细化、开、腐蚀、骨架化、扩张等
    2021-11-28 00:36:43下载
    积分:1
  • 混合高斯背景建模-运动物体检测下载
    使用混合高斯背景建模方法,进行视频中运动物体的检测。视频采用matlab自带的视频。适用于背景静止的视频。会用方框框出运动物体,阈值可自行调节。含实验报告。课程实验,仅供参考。
    2020-12-07下载
    积分:1
  • 视频中人体动作识别
    频中的人体动作识别研究,视频动作识别,视频识别动作视频下载,人体油画视频,人体解剖学视频,德国人体解剖学视频,新鲜人体解剖学视频,真实人体解剖学
    2020-11-06下载
    积分:1
  • STM32 LCD12864带日历时钟功能的电子密码锁设计 完整源码 实用
    STM32 带实时时钟,日历功能的电子密码锁设计,初始密码为123456。可以设定密码,3次输错将停止1分钟并提示。输入正确后,通过继电器开锁,并显示。修改密码时,需要第二次输入确认。密码存于后备区,掉电或复位均不丢失!!可以设定时间与闹铃时间。完整程序代码。 使用固件库3.4版,项目文件完整,包含了固件库。
    2021-05-07下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载