三相永磁同步电机国标
便于读者对永磁同步电机型式实验项目进行学习,有利于对永磁类电机的技术开发LEPGB/T22669-2008前言本标准参考采用了GB/T1029-2005《三相同步电机试验方法》、GB/T1032—2005《三相异步电动机试验方法》、GB/T13958-2008《无直流励磁绕组同步电动机试验方法》IEC60034-2-1:2007《旋转电机(牵引电机除外)确定损耗和效率的试验方法》和美国标准 IEEE Std112:204《多相感应电动机和发电机试验方法》的相关内容。本标准内容是广泛采用的公认的试验方法适应国际贸易技术交流和经济发展的需要。为满足特殊研究或应用的需要,可按本标准未作规定的附加方法进行试验本标准制定了适用于永磁同步电动机的“B法”测定效率的方法;基准温度采用了IEC6034-21200?的规定;给出了电机性能计算格式等本标准的附录A为规范性附录附录B和附录C为资料性附录。本标准由中国电器工业协会提出本标准由全国旋转电机标准化技术委员会(SAC/TC26)归口。本标准由上海电器科学研究所(集团)有限公可负资起草其他主耍起草单位有:江苏安捷机电技术有限公司、河南特高特电机科技发展有限公司、华北电力大学、广东江门江晟电机有限公司、安徽明腾永磁机电设备有限公司、卧龙电气集团股份有限公司。本标准主要起草人;陈伟华、倪立新、金惟伟、周志民、罗应立、刘华涛、袁福民、鲍周清、朱兴恒温旭、严伟灿、李秀英姚丙雷、张宝强陈亦新本标准为首次发布。EpicGB/T22669-—2008三相永磁同步电动机试验方法范围本标准规定了三相水磁同步电动机的试验方法本标准适用于自起动三相永磁同步电动机,静止变频电源供电的同步电动机试验可参照使用,不适用于有直流励磁绕组的同步电动机。2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,共随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,戴励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB755—2008旋转电机定额和性能(IEC60034-1:2004,IDT)GB/T1029—2005三相同步电机试验方法GB/T10322005三相异步电动机试验方法GB10068—2008轴中心高为56mm及以上电机的机槭振动振动的测量、评定及限值(IEC60034-14:2003,IDT)GB/T10069.1-2006旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法ISO1680:1999,MOD)GB/T13958-2008无直流励磁绕组同步电动机试验方法1EC60034-2-1:2007旋转电机(牵引电机除外)确定损耗和效率的标准试验方法3主要符号cosq功率因数电源频率(Hz)I1—定子线电流(A)——空毂线电流(A)Ik—堵转线电流〔A额定电流(A)—直流电机电枢电流(A)K—导体材料在0℃时电阻温度系数的倒数铜K1=235铝K1=225除非另有规定正d——转矩读数修正值(N·m)J——转动惯盘(kg·m2)n—试验时测得的转速(r/min)p一电机的极对数P1-输入功率(W)P2--输出功率(W)Ps--额定(输出)功率(WP铁耗(W)Pt—风摩耗(W)CEPICCB/T22669-2008P—剩余损耗(W)Ps杂散损耗(WPs—空载杂损耗(W)P。—一空载输入功率(W)PK—堵转时的输入功率(WPm—定子绕组在试验温度下P2R损耗(W)Poau空载时在试验温度下定子绕组PR损耗(WPaus—定子绕组在规定温度(0)下IR损耗(WR1——温度为阴1时定子绕组初始端电阻(g)RN-额定负载热试验结束时定子绕组端电阻〔)R:—试验温度下测得(或求得)的定子绕组端电阻()Rs—换算到规定温度()时的定子绕组端电阻(Q)R—-空载试验(锵个电压点)定子绕组端电阻(a)Ta—转矩读数(N·m)T如-—空载(与测力机连接)转矩读数(N·m)T—修正过的转矩(N·m)TK堵转时转矩(N·mT-—在试验电压L,下测得的失步转矩(N·m)TN一一额定电压时的失步转矩(N·m)T—最小转矩(N·mT—在试捡电压U下测得的牵入转矩(N·mTN-一额定电压下的标称牵人转矩N·m)T—异步转矩(N·m)Tx-永磁制动转矩(N·m)U—端电压(v)U。—空载试验端电压(V)Ux堵转试验端电压()Ux—额定电压(v)01—测量初始(玲)电阻R1时的绕组温度℃)a-一额定负载热试验期间测取的定子绕组最高温度℃4-试验时测得的定子绕组最高温度〔℃O.一热试验结束时冷却介质温度(℃日--负载试验时冷却介质温度(℃)标准规定的基准温度(℃0-计算效率时规定的定子绕组温度(℃—空载试验时定子绕组温度(℃)△61--定子绕组温升(K—效率(%)4试验要求4.1试验电游4.1.1电压4.1.1.1电压波形试验电源的谐波电压因数(HVF)应不超过0,02;在进行热试验时应不超过0.015CEpiCCB/T22669-20084.1.1.2电压系统的对称性三相电压系统的负序分量和零序分量均应不超过正序分量的1.0%在进行热试验时,电压系统的负序分量应不超过正序分量的0.5%零序分量的影响应予以排除。4.1.2频率4.1.2.1频率偏差试验期间,电源频率与规定频率之差应在规定频率的士0.3%范围内。1.22频率的稳定性试验期间不允许频率发生快速变化,因为频率快速变化不仅影响被试电机,也会影响到输出测量装置。测量期间频率变化量应小于0.1%42测量仪器4.2.1概述因为大多数仪器的准确度等级通常以满量程的百分数表示。因此,应尽量按实际读数的需要,选择低量程仪表。影响仪器测量结果准确度的因素a)信号源负载;b)引接线校正c)仪器的量程、使用条件和校准。4.2.2电量测量仪器通常,电量测量仪器的准确度应不低于0.5级(满量程,兆欧表除外)。用B法(见10,2,2)测定电机效率时,为保持试验结果的准确性和重复性,要求仪器的准确度等级不低于0.2级(满量程)般来说,电子仪器是多用途的,与无源仪器(非电子式)相比,有非當大的翰入阻抗,无需因仪器自身损耗而修正读数。但高输入阻抗仪器对干扰更为敏感。应依实践经验,采取减少于扰的措施。测盘用仪用互感器的准确度等级应不低于0.2级(满量程)4.2.3转矩测量仪一般试验用转矩测量仪(含测功机和传感器)的准确度等级应不低于0.5级。采用B法(见10.2.2测定效率时,转矩测量仪的准确度等级应不低于0.2级(满量程)4.2.4转速与频率测量仪转速表读数误差在土lr/min以内。频率表的准确度等级应不低于0.1级(满量程)4.2.5电阻测量仪绕组的直流电阻用双臂电桥或单臂电桥,或数字式微欧计测量准确度应不低于0.2级。4.2.6温度测量仪温度测量仪的最大允许误差为士1℃4.3测量要求4.3,1电压测量测量端电压的信号线应接到电机端子,如现场不允许这样连接,应计算由此引起的误差并对读数作校正。取三相电压的算术平均值计算电机性能三相电压的对称性应符合4.1.1.2的要求4.3.2电流测量应同时测量电动机的每相线电流,用三相线电流的算术平均值计算电动机的性能。使用电流互感器时接入二次回路仪器的总阻抗(包括连接导线)应不超过其额定阻抗值对I
- 2021-05-06下载
- 积分:1
2012年全国大学生数学建模竞赛A题一等奖论文
2012年全国大学生数学建模竞赛A题一等奖论文。高教社杯全国大学生数学建模竞赛编号专用页赛区评侧编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于数理分析的葡萄及葡萄酒评价体系摘要葡萄酒的质量评价是硏究葪萄酒的一个重要领域,目前葡萄酒的质量主要由评酒师感官评定。但感官评定存在人为因素,业界一自在尝试用葡萄的理化指标或者葡萄洏的理化指标定量评价葡萄洒的质量。本题要求我们根据葡萄以及葡萄酒的相关数据建模,并研究基」理化指标的葡萄酒评价体系的建立对于问题一,我们首先用配对样品t检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS软件对两组ⅳ酒员的评分的各个指标以及总评分进行了配对样本t检验。得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异白葡萄、红葡萄以及整休的评价存在显著性差异接着我们建立了数掂可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。得到第2组的方差明显小于第1组的从而得出了第2组评价数据的可信度更高的结论。对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。方面,我们对酿酒葡萄的级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27种葡萄理化指标的综合得分及其排序(见正文表5)。另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27种葡萄酒质量的综合得分并排序(见正文表6)。最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5级(见正文表8)。对于问一,首先我们将众多的葡萄理化指标用主成分分析法综合成6个主因子,并将葡萄等级也列为主因子之一。对葡萄的6个主因子,以及葡萄酒的10个指标用SPSS软件进行偏相关分析,得到酒黃酮与葡萄的等级正相关性较强等结论。之后对相关性较强的主因子和指标作多元线性回归。得到了葡萄酒10个单指标与主因了之间的多元回归方程,该回归方程定量表示两者之间的联系对于问题四,我们首先将葡萄酒的理化指标标准化处理,对葡萄酒的质量与荀萄的6个主因子和葡萄酒的10个单指标作偏相关分析,并求出多元线性回归方程。该方程就表示了葡萄和葡萄酒理化指标对葡萄酒质量的影响。之后,我们通过通径分析方法中的逐步回归分析得到葡萄与葡萄酒的理化指标只确定了葡萄酒质量信息的47%。从而得出了不能用葡萄和葡萄酒的理化指标评价葡萄酒的质量的结论。接着我们还采用通径分析屮的间接通径系数分析求出各自变量之间通过传递作用对应变量的影响,得到单宁与总酚传递性影响较强等结论最后,我们对模型的改进方向以及优缺点进行了讨论。关键词:配对样本t检验数据可信度评价主成分分析模糊数学评价综合评分信息熵偏相关分析多元线性回归1问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒荀萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件中给岀∫某年份一些葡萄酒的评价结果,并分別给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。我们需要建立数学模型并且讨论下列问题:1.分析附件1中两组评洒员的评价结果有无显著性差异,并确定哪一组的评价结果更可信。2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用荀萄和葡萄酒的理化指标来评价葡萄酒的质量2模型的假设与符号的约定2.1模型的假设与说明(1)评酒员的打分是按照加分制(不采用扣分制);(2)假设20名评酒员的评价八度在同一区间(数据合理,不需要标准化)(3)每位评酒员的系统误差较小,在本问题屮可以忽略不计(4)假设附件中给出的葡萄和荀萄酒理化指标都准确可靠。2.2符号的约定与说明符号符号的意义原假设显著性概率第1组评酒员对第号品种葡萄酒评分的平均值,第2组评洒员对第号品种葡萄酒评分的平均值第一组评酒员对指标评分的偏差的方差,第二组评酒员对指标评分的偏差的方差,=…,第1组10位评酒员对号酒样品第项指标评分的平均分第组第号评酒员对号酒样品第项指标评分与平均值的偏第1组第号评酒员对其项指标评分与平均值的偏差的平均第2组第个评酒员的总体指标偏差的方差重新确立的第项指标的权重第2组10个评酒员的总体指标偏差的方差评酒员指标的平均评分,=葡萄的第项指标,葡萄的第项因子,=葡萄酒的第项理化指标3问题一的分析与求解3.1问题一的分析题冂要求我们根据两组评酒员对27种红葡萄洒和28种白葡萄泙的10个指标相应的打分情况进行分析,并确定两组评酒员对葡萄酒的评价结果是否有显著性差异,然后判断哪组评酒员的评价结果更可信初步分析可知:由于评酒员对颜色、气味等感官指标的衡量人度不同,因此两组评酒员评价结果是否具有显著性差异应该与评价指标的类型有关,不同的评价指标的显著性差异可能会不同。同时,由于红葡萄酒和白葡萄酒的外观、口味竽指标羔异性较大,处理时需要将白葡萄酒和红葡萄酒的评价结果的显著性差昦分开讨论。基于以上分析,我们可以分别两组品尝同一种类酒样品的评酒员的评价结果进行两两配对,分析配对的数据是否满烂配对样品t检验的前提条件,而且根据常识可知评酒员对同一种酒的同一指标的评价在实际中是符合t检验的条件的。接着我们就可以对数据进行多组配对样品的t检验,从而对两组评洒员评价结果的显著性差异进行检验。由于对同一酒样品的评价数据只有两组,我们只能通过评价结果的稳定性来判定结果的可靠性。而每组结果的可靠性乂最终决定于每个评酒员的稳定性,因此将问题转化为对评酒员稳定性的评价。3.2配对样品的t检验简介统计知识指出:配对样本是指对冋一样本进行两次测试所获得的两组数据,或对两个完全相同的样本在不同条件下进行测试所得的两组数据。在本问中我们可以把配对样品理解为有27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,两组屮各个指标的数据为每组评酒员对该指标打分的平均值配对样品的t检验可检测配对双方的结果是否具有显著性差异,因此就可以检验出配对的双方(第一组与第二组)对葡萄酒的评价结果是否冇差异性型对样品t检验具有的前提条件为:(1)两样品必须配对(2)两样品来源的总体应该满足正态性分布。配对样品t检验基本原理是:求出每对的差值如果两种处理实际上没有差异,则差值的总体均数应当为0,从该总体中抽出的样本其均数也应当在0附近波动;反之,如果两种处理有差异,差值的总体均数就应当远离0,其样本均数也应当远离0。这样,通过检验该差值总体均数是否为0,就可以得知两种处理有无差异。该检验相应的假设为:=,两种处理没有差別,4≠两和处理存在差别3.3葡萄酒配对样品的t检验问题一中配对样品为27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,其中两组中各个指标的数据为各组10个评酒员对该指标打分的平均值。该问题中的10个指标分别为:外观澄清度、外观色调、香气纯正度、香气浓度、香气质量、口感纯正度、口感浓度、口感持久性、口感质量、平衡/总休评价。根据t检验的原理,对荀萄酒配对样品进行t检验之前我们要对样品进行正态性检验。首先我们根据附件一并处理表格中的数据,得到配对样品的两组数据,绘制红葡萄酒配对样品表格部分数据如表1表1红葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)2.3.18.4红29.6红263.63.78.8红273.73.78.8白葡萄酒配对样品表格部分数据如表2:表2白葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)白17.78.4白22.93.19.1日26白273.778.8从上表中我们能看出,将白葡萄酒和红葡萄酒中的每个指标分别进行样品的配对后,每一个指标的配对结果有27对,每一对的双方分别是1组和2组的评酒员对该指标的评分的平均值。3.3.1样本总体的K-S正态性检验配对样品的t检验要求两对应样品的总体满足正态分布,则总体中的样品应该满足正态性或者近似正态性,样本的正态性检验如卜以红葡萄酒的澄清度的27组数据为例分析:利用SPSS软作绘制两样品的直方图和趋势图如图1所示:图1红葡萄酒澄清度两组数据自方图我们假设两组总体数据都服从态分布,利用SPSS软件进行KS忙态性检验的具体结果见附录2.3。两组数据的近似相伴概率值P分别为0.239和0.329,大于我们一般的显著水平0.05则接受原来假设,即两组红葡萄酒的澄清度数据符合近似正态分布同理可用SPSS软件对其他指标的正态性进行检验,得到结果符合实际猜想,都服从近似正态分布。3.3.2葡萄酒配对样品t检验步骤两种葡萄酒的处理过程类似,这里我们以对红葡萄酒谜价结果的差异的显著性分析为例。step1:我们以第一组对葡萄酒的评价结果总体服从正态分布〃σ,以第二组对葡萄酒的评价结果总体服从正态分布μσ。我们已分别从两总体中获得了抽样样本和,并分别进行两样品相互配对。(具体数据见附录2.1)Step2:;引进一个新的随机变量,对应的样本为将配对样本的t检验转化为单样本t检验Step3:建立零假设4=,构造t统计量;Step4:利用SPSS进行配对样品t检验分析,并对结果做出推断3.4显著性差异结果分析3.3.1红葡萄酒各指标差异显著性分析由SPSS软件对红葡萄酒各指标的配对样品讠枍验后,得到各指标的显著性概率分布表。(结果如表3所示)表3红葡萄酒酒各指标显著性概率P指标外观澄清度外观色调香气纯正度香气浓度‖香气质量P0.6140.0020.1510.1000.010指标口感纯正度口感浓度口感持久性口感质量平衡/整体P0.4370.1580.2510.0550.674由统计学知识,如果显著性概率P显著水平α,则不能拒绝零假设,即认为两总体样本的均值不存在显著差异。则根据表3可得:两组评酒员对红葡萄酒各项指标的评价中除外观色调、香气质量存在显著性差异以外,其他8项指标都无显著性差异。3.3.2白葡萄酒各指标差异显著性分析代入白葡萄酒的评价数据,重复以上步骤,得到白荀萄酒各指标的显著性概率分布表。(结果如表4所示)表4白葡萄酒各指标显著性概率P分布表指标外观澄清度外观色调香气纯正度香气浓度香气质量P0,2990.0890.930.2380.714指标口感纯正度口感浓度口感持久性口感质量平衡/整体0,0000.0050.8630.0000.00l分析表4可得:两组评酒员对白葡萄酒各项指标的评价中只有凵感纯正度」感浓度、凵感质量、平衡/整体评价存在显著性差异,其他6项指标都无显著性差异3.3.3葡萄酒总体差异显著性分析(1)红葡萄酒总体差异显著性分析该问题的附件中已经给出了10项指标的杈重,因此将10项指标利用加权合并成总体评价。对于红葡萄酒两组评价结果构造两组配对t检验。得到显著性概率P=0.030
- 2020-12-04下载
- 积分:1