登录
首页 » matlab » 随机森林

随机森林

于 2020-07-05 发布
0 413
下载积分: 1 下载次数: 9

代码说明:

说明:  随机森林算法与 Bagging 算法类似,均是基于 Bootstrap 方法重采样,产生多个训练集。不同的是,随机森林算法在构建决策树的时候,采用了随机选取分裂属性集的方法 本程序中,将乳腺肿瘤病灶组织的细胞核显微图像的 10 个量化特征作为模型的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为模型的输出。用训练集数据进行随机森林分类器的创建,然后对测试集数据进行仿真测试,最后对测试结果进行分析。(Similar to bagging algorithm, random forest algorithm is based on bootstrap resampling to generate multiple training sets. The difference is that the random forest algorithm uses the method of randomly selecting the split attribute set when constructing the decision tree In this program, 10 quantitative features of nuclear microscopic image of breast tumor tissue are taken as the input of the model, and the benign and malignant breast tumor are taken as the output of the model. The training set data is used to create the random forest classifier, then the test set data is simulated and the test results are analyzed.)

文件列表:

随机森林, 0 , 2020-07-05
随机森林\MexStandalone, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\README.txt, 3128 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 28672 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2013-09-02
随机森林\Readme.txt, 396 , 2013-09-02
随机森林\data.mat, 86267 , 2009-11-29
随机森林\main.m, 2566 , 2013-09-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SlidingModeControl
    滑模控制的经典算例程序,可以帮助初学者快速掌握滑模控制的编程思想(Sliding mode control procedures for the classic examples that can help beginners master the sliding mode control Express programming thought)
    2009-02-25 09:56:47下载
    积分:1
  • C语言经典例题100道
    C语言经典例题100道.................(100 Classic Questions in C Language)
    2020-06-21 15:40:02下载
    积分:1
  • 6-3solution
    “六度空间”理论又称“六度分隔”理论,可以通俗的阐述为“你和任何一个陌生人之间所间隔的人不会超过六个人”,也就是说最多通过五个人你就能认识任何一个陌生人。(" Six Degrees of Separation" theory known as " six degrees of separation" theory, can be described as a popular " people between you and any stranger spaced no more than six people," that is up to you by five people will be able to recognize any stranger.)
    2015-03-06 19:15:23下载
    积分:1
  • linghuigui
    岭回归文章附MATLAB源代码,相对完整,是一篇学生论文。(Ridge Regression article attached to MATLAB source code, relatively complete, is a student paper.)
    2021-01-15 19:38:46下载
    积分:1
  • ComplexT
    说明:  复化梯形公式,数值计算。This the main application source file(Minute trapezoid formula, numerical calculation. This is the main application source file)
    2005-10-20 11:04:41下载
    积分:1
  • 4285
    主要是基于mtlab的程序,包含特征值与特征向量的提取、训练样本以及最后的识别,小波包分析提取振动信号中的特征频率。( Mainly based on the mtlab procedures, Contains the eigenvalue and eigenvector extraction, the training sample, and the final recognition, Wavelet packet analysis to extract vibration signal characteristic frequency.)
    2017-04-21 22:20:44下载
    积分:1
  • 侯媛彬《系统辨识及其Matlab仿真》光盘附件
    说明:  系统辨识及其matlab仿真源码,对于学习控制方面的人来说是本不错的练习(System identification and MATLAB simulation source code.It's a good exercise for people in learning control)
    2021-01-22 10:52:19下载
    积分:1
  • CA-CFAR
    这是一个关于单元平均恒虚警的程序,当做目标检测时,单元平均恒虚警检测非常有用!(this is a programm about CA-CFAR, u can use it to perform constant false alarm rate detection when needed.)
    2017-09-29 20:31:29下载
    积分:1
  • 微电网潮流
    对微电网进行潮流计算,四用于直流和交流系统(power flow calculation)
    2021-01-26 12:28:37下载
    积分:1
  • MATLAB3
    包括如下源码:2.3-元胞数组的使用方法、2.4-结构数组的使用方法、2.5-矩阵的使用方法、2.6-字符串的操作方法、2.7-判断函数的使用方法(Including the following source code: the use of the 2.3- cell array, the use of the 2.4- structure array, the use of the 2.5- matrix, the operation method of the 2.6- string, and the use of the 2.7- judgment function)
    2018-05-07 09:04:44下载
    积分:1
  • 696518资源总数
  • 106208会员总数
  • 21今日下载