登录
首页 » matlab » 随机森林

随机森林

于 2020-07-05 发布
0 396
下载积分: 1 下载次数: 9

代码说明:

说明:  随机森林算法与 Bagging 算法类似,均是基于 Bootstrap 方法重采样,产生多个训练集。不同的是,随机森林算法在构建决策树的时候,采用了随机选取分裂属性集的方法 本程序中,将乳腺肿瘤病灶组织的细胞核显微图像的 10 个量化特征作为模型的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为模型的输出。用训练集数据进行随机森林分类器的创建,然后对测试集数据进行仿真测试,最后对测试结果进行分析。(Similar to bagging algorithm, random forest algorithm is based on bootstrap resampling to generate multiple training sets. The difference is that the random forest algorithm uses the method of randomly selecting the split attribute set when constructing the decision tree In this program, 10 quantitative features of nuclear microscopic image of breast tumor tissue are taken as the input of the model, and the benign and malignant breast tumor are taken as the output of the model. The training set data is used to create the random forest classifier, then the test set data is simulated and the test results are analyzed.)

文件列表:

随机森林, 0 , 2020-07-05
随机森林\MexStandalone, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\README.txt, 3128 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 28672 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2013-09-02
随机森林\Readme.txt, 396 , 2013-09-02
随机森林\data.mat, 86267 , 2009-11-29
随机森林\main.m, 2566 , 2013-09-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 梁的静力学有限元分析,ansys命令流实例
    梁的静力学有限元分析,ansys命令流实例(Static analysis of beams, ANSYS command flow)
    2018-06-11 15:03:59下载
    积分:1
  • crm102
    **压力锅crm方案(** program because of autoclave crm)
    2004-09-30 11:22:18下载
    积分:1
  • 396989
    这是我找的java原代码,大家一起分享哦()
    2017-09-23 15:09:38下载
    积分:1
  • c8051f020deima
    c8051f020源代码39个 使用Silicon Labs IDE 调试器(C8051F020 source code 39 to use Silicon Labs IDE debugger)
    2009-01-10 09:19:36下载
    积分:1
  • 笼型异步交流风机
    笼型异步发电机组模型,包括风力机,发电机等,可运行(Detailed model and grid-connected control of doubly-fed fan can be operated.)
    2019-07-10 23:13:03下载
    积分:1
  • Maltab
    说明:  常用建模方法及其MATLAB源程序,包括线性规划,灰色预测,神经网络,遗传算法,粒子群算法等算法的MATLAB源程序(Common modeling methods and MATLAB source program, including linear programming, grey prediction, neural network, genetic algorithm, particle swarm optimization algorithm and other algorithms of MATLAB source program)
    2019-03-06 06:14:54下载
    积分:1
  • Chapter02
    说明:  机器学习第二版书籍源码,文件较大,分章节上传(This is the code repository for Python Machine Learning - Second Edition, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.)
    2019-03-12 09:39:27下载
    积分:1
  • PLC
    精品课程《 电气控制与PLC》教学课件 燕山大学(Excellent Course " Electrical Control and PLC" Yanshan University Courseware)
    2011-05-12 18:06:53下载
    积分:1
  • 1
    说明:  32位变量移位操作,输出到界面。联合体变量是公用一块内存,所以对其中一个变量操作会影响其他变量。(32-bit variable shift operation, output to the interface.)
    2019-07-16 15:50:27下载
    积分:1
  • openglmaterial
    OpenGL的大海量资料收集,罗列除了众多算法源码以及实现原理,图像处理人员必备(OpenGL big massive data collection, listed in addition to the many and the realization of the principle source algorithm, image processing personnel must)
    2007-12-21 12:19:39下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载