登录
首页 » matlab » ruan zhu

ruan zhu

于 2020-07-09 发布
0 221
下载积分: 1 下载次数: 1

代码说明:

说明:  一个用DBN做时间序列预测的实例,内包括了数据(An example of using DBN to predict time series includes data)

文件列表:

ruan zhu\choose.fig, 6677 , 2020-07-03
ruan zhu\choose.m, 3556 , 2020-01-11
ruan zhu\contact.fig, 7981 , 2020-07-03
ruan zhu\contact.m, 3495 , 2020-07-03
ruan zhu\cross.m, 306 , 2018-01-12
ruan zhu\DeepLearnToolbox\2019负荷.xlsx, 243570 , 2020-03-27
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_one.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_two.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_NSW.mat, 68825 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_QLD.mat, 66211 , 2015-01-04
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_SA.mat, 58170 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_TAS.mat, 55411 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_VIC.mat, 67017 , 2015-07-02
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\.travis.yml, 249 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeapplygrads.m, 1219 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebbp.m, 917 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebp.m, 1011 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caedown.m, 259 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeexamples.m, 754 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caenumgradcheck.m, 3618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caesdlm.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caetrain.m, 1148 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeup.m, 489 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\max3d.m, 173 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaesetup.m, 1937 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaetrain.m, 270 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnapplygrads.m, 575 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnbp.m, 2141 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnff.m, 1774 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnnumgradcheck.m, 3430 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnsetup.m, 2020 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntest.m, 193 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntrain.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CONTRIBUTING.md, 544 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\create_readme.sh, 744 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\data\mnist_uint8.mat, 14735220 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnsetup.m, 557 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbntrain.m, 232 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnunfoldtonn.m, 425 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmdown.m, 90 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmtrain.m, 1401 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmup.m, 89 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\LICENSE, 1313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnapplygrads.m, 628 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnbp.m, 1638 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnchecknumgrad.m, 704 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nneval.m, 811 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnff.m, 1848 , 2019-04-30
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnpredict.m, 192 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnsetup.m, 1844 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntest.m, 184 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntrain.m, 2415 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnupdatefigures.m, 1858 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README.md, 8730 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README_header.md, 2256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\REFS.md, 950 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saesetup.m, 132 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saetrain.m, 308 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\runalltests.m, 165 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_CNN.m, 981 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_DBN.m, 1031 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_NN.m, 3247 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_SAE.m, 934 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\allcomb.m, 2618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\expand.m, 1958 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flicker.m, 208 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipall.m, 80 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\fliplrf.m, 543 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipudf.m, 576 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\im2patches.m, 313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\isOctave.m, 108 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\makeLMfilters.m, 1895 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\myOctaveVersion.m, 169 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\normalize.m, 97 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\patches2im.m, 242 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randcorr.m, 283 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randp.m, 2083 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\rnd.m, 49 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigm.m, 48 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigmrnd.m, 126 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\softmax.m, 256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\tanh_opt.m, 54 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\visualize.m, 1072 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\whiten.m, 183 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\zscore.m, 137 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_one.m, 3964 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_two.m, 3935 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\errormeasure.m, 631 , 2017-03-30
ruan zhu\DeepLearnToolbox\EMDDBN\errperf.m, 5289 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\nnpredicty.m, 140 , 2014-07-06
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\bugfix.sh, 216 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc.m, 2354 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2.m, 2362 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2_fix.m, 2312 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc_fix.m, 2305 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emd.m, 22275 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc.m, 2280 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc_fix.m, 2141 , 2015-03-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ldpcdecode
    低密度效验码的解码过程。有部分注解。matlab环境下。(low-density well-tested code decoding process. Some notes. Matlab environment.)
    2006-12-15 09:49:32下载
    积分:1
  • security-assessment
    暂态能量函数法用于可靠性安全性评估,包括了可靠性评估及暂态能量函数法的使用,很有价值的一篇文章。(Transient energy function method for the reliability of safety assessment, including reliability assessment and the use of transient energy function method, a valuable article.)
    2011-10-23 14:14:17下载
    积分:1
  • kMeanExtract
    本代码是基于k-mean聚类的关键帧提取代码,是用matlab来实现的。(The code is based on k-mean clustering key frame extraction code, using matlab to achieve.)
    2014-01-21 10:49:44下载
    积分:1
  • FCM-code
    image segmentation using Fuzzy C Means Clustering algorithm
    2015-04-06 13:58:54下载
    积分:1
  • colorimageencryption
    A color image encryption code which segregated the image components separately. Include "Add Noise" as well !!
    2014-01-14 10:49:04下载
    积分:1
  • Sift-matlab-algorithm
    基于sift算法的matlab运算,能过对图像进行操作(Sift matlab algorithm based on computing)
    2011-05-02 01:59:10下载
    积分:1
  • PCA_Nicolas
    pca算法的matlab程序,能够运行,方便修改。(Pca algorithm in matlab, and convenient operation can be modified.)
    2010-05-21 10:21:39下载
    积分:1
  • pgms
    matlab scripts for some image processing applications like windowing,zooming etc
    2013-04-08 23:27:28下载
    积分:1
  • ELG6163GeoffreyGreen
    FILTRAGE ECG RECONSTRUCTION DE complexe QRS
    2010-10-19 20:16:15下载
    积分:1
  • Articles-watermarking
    articles of watermarking 3d images
    2012-04-23 01:19:05下载
    积分:1
  • 696518资源总数
  • 106245会员总数
  • 18今日下载