登录
首页 » matlab » ruan zhu

ruan zhu

于 2020-07-09 发布
0 207
下载积分: 1 下载次数: 1

代码说明:

说明:  一个用DBN做时间序列预测的实例,内包括了数据(An example of using DBN to predict time series includes data)

文件列表:

ruan zhu\choose.fig, 6677 , 2020-07-03
ruan zhu\choose.m, 3556 , 2020-01-11
ruan zhu\contact.fig, 7981 , 2020-07-03
ruan zhu\contact.m, 3495 , 2020-07-03
ruan zhu\cross.m, 306 , 2018-01-12
ruan zhu\DeepLearnToolbox\2019负荷.xlsx, 243570 , 2020-03-27
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_one.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_two.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_NSW.mat, 68825 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_QLD.mat, 66211 , 2015-01-04
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_SA.mat, 58170 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_TAS.mat, 55411 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_VIC.mat, 67017 , 2015-07-02
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\.travis.yml, 249 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeapplygrads.m, 1219 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebbp.m, 917 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebp.m, 1011 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caedown.m, 259 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeexamples.m, 754 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caenumgradcheck.m, 3618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caesdlm.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caetrain.m, 1148 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeup.m, 489 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\max3d.m, 173 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaesetup.m, 1937 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaetrain.m, 270 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnapplygrads.m, 575 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnbp.m, 2141 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnff.m, 1774 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnnumgradcheck.m, 3430 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnsetup.m, 2020 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntest.m, 193 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntrain.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CONTRIBUTING.md, 544 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\create_readme.sh, 744 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\data\mnist_uint8.mat, 14735220 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnsetup.m, 557 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbntrain.m, 232 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnunfoldtonn.m, 425 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmdown.m, 90 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmtrain.m, 1401 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmup.m, 89 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\LICENSE, 1313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnapplygrads.m, 628 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnbp.m, 1638 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnchecknumgrad.m, 704 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nneval.m, 811 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnff.m, 1848 , 2019-04-30
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnpredict.m, 192 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnsetup.m, 1844 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntest.m, 184 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntrain.m, 2415 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnupdatefigures.m, 1858 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README.md, 8730 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README_header.md, 2256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\REFS.md, 950 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saesetup.m, 132 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saetrain.m, 308 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\runalltests.m, 165 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_CNN.m, 981 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_DBN.m, 1031 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_NN.m, 3247 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_SAE.m, 934 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\allcomb.m, 2618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\expand.m, 1958 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flicker.m, 208 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipall.m, 80 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\fliplrf.m, 543 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipudf.m, 576 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\im2patches.m, 313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\isOctave.m, 108 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\makeLMfilters.m, 1895 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\myOctaveVersion.m, 169 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\normalize.m, 97 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\patches2im.m, 242 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randcorr.m, 283 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randp.m, 2083 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\rnd.m, 49 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigm.m, 48 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigmrnd.m, 126 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\softmax.m, 256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\tanh_opt.m, 54 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\visualize.m, 1072 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\whiten.m, 183 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\zscore.m, 137 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_one.m, 3964 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_two.m, 3935 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\errormeasure.m, 631 , 2017-03-30
ruan zhu\DeepLearnToolbox\EMDDBN\errperf.m, 5289 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\nnpredicty.m, 140 , 2014-07-06
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\bugfix.sh, 216 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc.m, 2354 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2.m, 2362 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2_fix.m, 2312 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc_fix.m, 2305 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emd.m, 22275 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc.m, 2280 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc_fix.m, 2141 , 2015-03-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 0470848685.Integrated.Photonics
    integrated photonics ebook
    2010-09-26 21:15:56下载
    积分:1
  • PCA
    说明:  人脸识别的源程序,基于matlab编程,主要采用PCA算法。(face recognition system based on PCA )
    2010-04-01 10:51:21下载
    积分:1
  • LIVRE_Automatique-Systemes-linaires-non-linEAires
    LIVRE_Automatique-Systemes-linaires-non linEAires
    2015-02-18 07:37:47下载
    积分:1
  • K_Means_image_compression
    - K means algorithm is performed with different initial centroids in order to get the best clustering. - The total cost is calculated by summing the distance of each point to its cluster centre and then summing over all the clusters.Based on the minimum overall cost achieved during each iteration of iterKMeans the pixel assignment to their respective clusters are made and final compressed image is obtained. This algorithm will run slower as the number of clusters , size of the image and number of iterations increase.
    2013-07-26 15:49:00下载
    积分:1
  • [MATLAB统计分析与应用:40个案分析]谢中华
    matlab统计分析案例,经典教材,值得好好学习,对数模很有帮助(Matlab statistics, which is quite worth reading and is beneficial to mathmatical learning.)
    2020-06-19 07:40:02下载
    积分:1
  • Matlab--valuable-book
    这个文件的名叫Matlab宝典的学习书,本文件详细记录了matlab的学习方法。(Collection of this file called Matlab study book, a detailed record of the file matlab way of learning.)
    2011-08-07 16:06:42下载
    积分:1
  • Fang
    基于TDOA原理,经过我本人测试过的fang算法,很好用的。(TDOA-based principle, after I tested fang algorithm, very good use.)
    2011-06-24 10:29:43下载
    积分:1
  • IRIS_Tbx_8_20110420a
    matlab宏观经济分析工具箱(包含X12季节调整)(Macroeconomic toolbox (including X12 seasonally adjusted))
    2013-03-20 00:41:10下载
    积分:1
  • fwdexp08quadraturemodulatedwave
    this code has been for modulating the signal in the matlab ,this is very precise and usefull
    2013-04-02 16:22:57下载
    积分:1
  • registration_cross_correlation
    registrationimage by cross correlation
    2010-01-04 20:32:20下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载