登录
首页 » matlab » ruan zhu

ruan zhu

于 2020-07-09 发布
0 196
下载积分: 1 下载次数: 1

代码说明:

说明:  一个用DBN做时间序列预测的实例,内包括了数据(An example of using DBN to predict time series includes data)

文件列表:

ruan zhu\choose.fig, 6677 , 2020-07-03
ruan zhu\choose.m, 3556 , 2020-01-11
ruan zhu\contact.fig, 7981 , 2020-07-03
ruan zhu\contact.m, 3495 , 2020-07-03
ruan zhu\cross.m, 306 , 2018-01-12
ruan zhu\DeepLearnToolbox\2019负荷.xlsx, 243570 , 2020-03-27
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_one.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_two.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_NSW.mat, 68825 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_QLD.mat, 66211 , 2015-01-04
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_SA.mat, 58170 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_TAS.mat, 55411 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_VIC.mat, 67017 , 2015-07-02
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\.travis.yml, 249 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeapplygrads.m, 1219 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebbp.m, 917 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebp.m, 1011 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caedown.m, 259 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeexamples.m, 754 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caenumgradcheck.m, 3618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caesdlm.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caetrain.m, 1148 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeup.m, 489 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\max3d.m, 173 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaesetup.m, 1937 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaetrain.m, 270 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnapplygrads.m, 575 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnbp.m, 2141 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnff.m, 1774 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnnumgradcheck.m, 3430 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnsetup.m, 2020 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntest.m, 193 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntrain.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CONTRIBUTING.md, 544 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\create_readme.sh, 744 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\data\mnist_uint8.mat, 14735220 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnsetup.m, 557 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbntrain.m, 232 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnunfoldtonn.m, 425 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmdown.m, 90 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmtrain.m, 1401 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmup.m, 89 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\LICENSE, 1313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnapplygrads.m, 628 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnbp.m, 1638 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnchecknumgrad.m, 704 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nneval.m, 811 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnff.m, 1848 , 2019-04-30
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnpredict.m, 192 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnsetup.m, 1844 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntest.m, 184 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntrain.m, 2415 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnupdatefigures.m, 1858 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README.md, 8730 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README_header.md, 2256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\REFS.md, 950 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saesetup.m, 132 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saetrain.m, 308 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\runalltests.m, 165 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_CNN.m, 981 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_DBN.m, 1031 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_NN.m, 3247 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_SAE.m, 934 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\allcomb.m, 2618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\expand.m, 1958 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flicker.m, 208 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipall.m, 80 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\fliplrf.m, 543 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipudf.m, 576 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\im2patches.m, 313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\isOctave.m, 108 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\makeLMfilters.m, 1895 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\myOctaveVersion.m, 169 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\normalize.m, 97 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\patches2im.m, 242 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randcorr.m, 283 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randp.m, 2083 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\rnd.m, 49 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigm.m, 48 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigmrnd.m, 126 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\softmax.m, 256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\tanh_opt.m, 54 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\visualize.m, 1072 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\whiten.m, 183 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\zscore.m, 137 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_one.m, 3964 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_two.m, 3935 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\errormeasure.m, 631 , 2017-03-30
ruan zhu\DeepLearnToolbox\EMDDBN\errperf.m, 5289 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\nnpredicty.m, 140 , 2014-07-06
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\bugfix.sh, 216 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc.m, 2354 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2.m, 2362 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2_fix.m, 2312 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc_fix.m, 2305 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emd.m, 22275 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc.m, 2280 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc_fix.m, 2141 , 2015-03-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Gaussseidel
    gauss seidel program
    2009-07-06 10:49:35下载
    积分:1
  • CADforstepfiber
    说明:  开发的结合用C语言与matlab计算阶跃光纤中的模场分布、传播常数与功率分布情况。(The combination of development with C language and matlab calculation step in the fiber mode field distribution, propagation constant and power distribution.)
    2008-10-09 12:44:06下载
    积分:1
  • collision
    two balls collision using matlab
    2010-05-20 21:10:13下载
    积分:1
  • useful-small-boo-matlab-develop
    用matlab编写的一些常用小波程序。对于初学人员具有很好的参考价值。可以套用修改为自己所需的程序。(Using matlab wavelet some common procedures. For the beginner who has a good reference value. You can apply for their desired program modifications.)
    2015-04-12 20:19:43下载
    积分:1
  • Analytic-Signal-Generator
    关于信号处理方面音效移频中解析信号的产生方法,该方法让人耳目一新,通过先设计频域,再求逆,时域上进行采样,得到两个FIR滤波器逼近希尔伯特变换器。(Aboat an efficient method of analytical signal generation in audio frequency shift.This method refreshing, first design in the frequency domain, then sampling in the time domain, getting two FIR filters approximate Hilbert transform.)
    2015-04-20 11:05:27下载
    积分:1
  • chunzhihou
    各种使用simulink纯滞后系统仿真实例(Various simulation simulink delay system)
    2013-08-26 08:24:39下载
    积分:1
  • edgedetection
    进行边缘检测,效果比较好,和其他几种进行比较之后显示出优势(process edgedetection)
    2011-10-08 15:09:01下载
    积分:1
  • rayleigh
    This is layleigh source code for Matlab program
    2009-10-03 12:33:34下载
    积分:1
  • Comparative
    Comparative Performance Analysis of Wireless Communication Protocols for Intelligent Sensors and Their Applications
    2014-10-19 20:18:06下载
    积分:1
  • 8-DIPUM-Code
    Basics in Image processing using MATLAB
    2009-06-09 12:36:05下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载