登录
首页 » Python » Python深度学习实战_原书代码

Python深度学习实战_原书代码

于 2020-07-30 发布
0 206
下载积分: 1 下载次数: 1

代码说明:

说明:  深度学习正在为广泛的行业带来革命性的变化。对于许多应用来说,深度学习通过做出更快和更准确的预测,证明其已经超越人类的预测。本书提供了自上而下和自下而上的方法来展示深度学习对不同领域现实问题的解决方案。这些应用程序包括计算机视觉、自然语言处理、时间序列预测和机器人。(Deep learning is bringing revolutionary changes to a wide range of industries. For many applications, deep learning proves to be beyond human prediction by making faster and more accurate predictions. This book provides top-down and bottom-up approaches to demonstrate deep learning solutions to practical problems in different areas. These applications include computer vision, natural language processing, time series prediction and robotics.)

文件列表:

原书代码\.gitattributes, 66 , 2018-05-22
原书代码\9781484235157.jpg, 28610 , 2018-05-22
原书代码\Chapter10_RNN and LSTM in visual\sp500.csv, 48119 , 2018-05-22
原书代码\Chapter10_RNN and LSTM in visual\Time Series forcasting with lstm model.ipynb, 58177 , 2018-05-22
原书代码\Chapter11_Speech to text and vice versa\audio.wav, 704556 , 2018-05-22
原书代码\Chapter11_Speech to text and vice versa\Speech to Text API and Text to Speech.ipynb, 14096 , 2018-05-22
原书代码\Chapter12_Developing Chatbots\intent1.csv, 1393 , 2018-05-22
原书代码\Chapter12_Developing Chatbots\Removing Punctuations.ipynb, 72 , 2018-05-22
原书代码\Chapter12_Developing Chatbots\Removing Stopwords.ipynb, 72 , 2018-05-22
原书代码\Chapter12_Developing Chatbots\TF-IDF and Word2Vec.ipynb, 26152 , 2018-05-22
原书代码\Chapter12_Developing Chatbots\Tokenization.ipynb, 72 , 2018-05-22
原书代码\Chapter13_Face Recognition\Face_Detection.py, 3062 , 2018-05-22
原书代码\Chapter13_Face Recognition\Face_Recognition.py, 5288 , 2018-05-22
原书代码\Chapter13_Face Recognition\Face_Tracking.py, 6612 , 2018-05-22
原书代码\Chapter1_Prerequisites of Deep Learning Numpy, Pandas and Scikit-Learn\chapter1_summary.ipynb, 341456 , 2018-05-22
原书代码\Chapter2_Basics of Tensorflow\chapter2_summary.ipynb, 27538 , 2018-05-22
原书代码\Chapter2_Basics of Tensorflow\TFBasics.ipynb, 6190 , 2018-05-22
原书代码\Chapter3_Understanding and working on Keras\chapter3_summary.ipynb, 34522 , 2018-05-22
原书代码\Chapter3_Understanding and working on Keras\MLPMNIST.ipynb, 32446 , 2018-05-22
原书代码\Chapter3_Understanding and working on Keras\model.h5, 13115488 , 2018-05-22
原书代码\Chapter3_Understanding and working on Keras\modelWeight.h5, 6564312 , 2018-05-22
原书代码\Chapter3_Understanding and working on Keras\Softmax _RegressionB.ipynb, 9107 , 2018-05-22
原书代码\Chapter5_Regresson to MLP in Tensorflow\Implementing a hidden layer MLP.ipynb, 23657 , 2018-05-22
原书代码\Chapter5_Regresson to MLP in Tensorflow\Linear Regression Tensorflow.ipynb, 48633 , 2018-05-22
原书代码\Chapter5_Regresson to MLP in Tensorflow\Logistic Regression Tensorflow.ipynb, 23254 , 2018-05-22
原书代码\Chapter5_Regresson to MLP in Tensorflow\Saved Games\desktop.ini, 282 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\Fashion MNIST Data Logistic Regression in Keras.ipynb, 3749 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\fashion_mnist.py, 1520 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\iris_test.csv, 511 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\iris_train.csv, 4151 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\Log Linear Model using scikit learn and keras.ipynb, 15944 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\Logistic regression using scikit Learn and keras.ipynb, 4958 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\MLP on Iris Dataset.ipynb, 16811 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\MLP on MNIST dataset digit classification.ipynb, 7781 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\MLP on randomly generated data.ipynb, 5545 , 2018-05-22
原书代码\Chapter6_Regression to MLP in Keras\my_model.h5, 1367784 , 2018-05-22
原书代码\Chapter8_CNN with Tensorflow\chapter 8.ipynb, 10151 , 2018-05-22
原书代码\Chapter9_CNN with Keras\CNN_with_Keras.ipynb, 6051 , 2018-05-22
原书代码\Chapter9_CNN with Keras\horse.jpg, 6232 , 2018-05-22
原书代码\Chapter9_CNN with Keras\Image Classifier with cifar10 data.ipynb, 4099 , 2018-05-22
原书代码\Chapter9_CNN with Keras\Pre-trained Models.ipynb, 123152 , 2018-05-22
原书代码\Contributing.md, 677 , 2018-05-22
原书代码\errata.md, 225 , 2018-05-22
原书代码\LICENSE.txt, 1350 , 2018-05-22
原书代码\README.md, 553 , 2018-05-22
原书代码\Thumbs.db, 14336 , 2019-05-27
原书代码\Chapter5_Regresson to MLP in Tensorflow\Saved Games, 0 , 2019-01-03
原书代码\Chapter10_RNN and LSTM in visual, 0 , 2019-01-03
原书代码\Chapter11_Speech to text and vice versa, 0 , 2019-01-03
原书代码\Chapter12_Developing Chatbots, 0 , 2019-01-03
原书代码\Chapter13_Face Recognition, 0 , 2019-01-03
原书代码\Chapter1_Prerequisites of Deep Learning Numpy, Pandas and Scikit-Learn, 0 , 2019-01-03
原书代码\Chapter2_Basics of Tensorflow, 0 , 2019-01-03
原书代码\Chapter3_Understanding and working on Keras, 0 , 2019-01-03
原书代码\Chapter5_Regresson to MLP in Tensorflow, 0 , 2019-01-03
原书代码\Chapter6_Regression to MLP in Keras, 0 , 2019-01-03
原书代码\Chapter8_CNN with Tensorflow, 0 , 2019-01-03
原书代码\Chapter9_CNN with Keras, 0 , 2019-01-03
原书代码, 0 , 2019-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • boost2014a
    可以实现储能的充放电控制,通过改变电压参考值可以控制蓄电池的充放电,加入滤波以后,波形不错(It can realize the charge and discharge control of energy storage. By changing the voltage reference value, the charge and discharge of the battery can be controlled. After adding the filter, the waveform is good.)
    2019-01-05 16:47:48下载
    积分:1
  • particle swarm optimization algorithm
    运用粒子群优化算法求解组合权重,可以综合主客观权重值重新赋予各权重系数一个新的权重系数,得到更加准确地权重计算结果。(Using the particle swarm optimization algorithm to solve the combined weights, the primary and objective weight values can be combined to re-assign a new weight coefficient to each weight coefficient, and a more accurate weight calculation result can be obtained.)
    2018-12-14 10:07:48下载
    积分:1
  • paper
    一位学术界大师写的PPT,如何写出世界级的好paper(how to write a world class paper)
    2009-02-26 13:47:10下载
    积分:1
  • DM test
    一个检验应用模型和对比模型优劣的经典统计方法,常用在数学,统计学和人工智能领域。(Test the advantages and disadvantages between proposed model and comparative model.)
    2020-12-01 17:09:26下载
    积分:1
  • 距离速度拖匀速数字实现
    距离速度匀速通过matlab实现的方法,同时将仿真结果附上。(The method of achieving uniform speed and distance is implemented by MATLAB, and the simulation results are attached.)
    2018-06-11 16:30:18下载
    积分:1
  • AddressExample
    访问Palm的Address地址簿例子。需要首先安装delphi-conduits类库。此类库已上传请自行查找。(Visit the Palm address book example of the Address. First install the required library delphi-conduits. From such a database has been your own search.)
    2009-02-25 10:29:38下载
    积分:1
  • 典型序列的产生
    一、 实验目的 1. 掌握典型序列的产生方法。 2. 掌握DFT的实现方法,利用DFT对信号进行频域分析。 3. 熟悉连续信号经采样前后频谱的变化,加深对时域采样定理的理解。 4. 分别利用卷积和DFT分析信号及系统的时域和频域特性,验证时域卷积定理。 二、实验环境 1. Windows2000操作系统 2. MATLAB6.0(First, the purpose of the experiment 1. master the method of producing typical sequence. 2. master the realization method of DFT and use DFT to analyze the signal in frequency domain. 3. familiar with the change of the frequency spectrum before and after the continuous signal sampling, deepen the understanding of the time domain sampling theorem. 4. the time domain and frequency domain characteristics of the convolution and DFT analysis signals and systems are used to verify the time domain convolution theorem. Two. Experimental environment 1. Windows2000 operating system 2. MATLAB6.0)
    2018-03-09 10:34:32下载
    积分:1
  • 超声波壁障 遥控小车
    超声波壁障由舵机带动超声波检测周围障碍物,前端遥控功能,循迹功能,(Ultrasound Wall Barrier, Front End Remote Control Function)
    2020-06-25 04:20:01下载
    积分:1
  • Prim used for the minimum spanning tree algorithm
    用Prim算法求最小生成树-Prim used for the minimum spanning tree algorithm
    2022-04-24 09:30:53下载
    积分:1
  • firefox 安装文件 希望大家可以用到 希望大家可以用到
    firefox 安装文件 希望大家可以用到 希望大家可以用到-firefox installation files hope that we can use hope that we can use
    2022-05-24 17:38:43下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载