登录
首页 » matlab » 改进svm

改进svm

于 2021-03-06 发布
0 284
下载积分: 1 下载次数: 10

代码说明:

说明:  phog方法提取图像特征,svm支持向量机进行分类,分别有GA遗传算法和PSO粒子群优化算法进行寻优。(Phog method extracted image features, SVM support vector machine classification, respectively, GA genetic algorithm and PSO particle swarm optimization algorithm for optimization.)

文件列表:

1_30.jpg, 7107 , 2020-04-21
1_30.jpg.txt, 4237 , 2020-05-24
2_30.jpg, 51795 , 2020-04-21
3_30.jpg, 37510 , 2020-04-21
4_30.jpg, 20977 , 2020-04-21
5_30.jpg, 66186 , 2020-04-21
Accuracy_GA_SVM.m, 1232 , 2020-05-09
Accuracy_PSO_SVM.m, 1233 , 2020-05-23
Accuracy_SVM.m, 1225 , 2020-05-23
anna_binMatrix.m, 1455 , 2020-05-04
anna_phog.m, 1818 , 2020-05-04
anna_phog_demo.m, 170 , 2020-05-24
anna_phogDescriptor.m, 1215 , 2020-05-04
Demo-image, 0 , 2020-05-09
Demo-image\0.jpg, 156403 , 2015-05-27
Demo-image\1.jpg, 91161 , 2015-05-27
Demo-image\10.jpg, 4101 , 2013-03-24
Demo-image\11.jpg, 156581 , 2015-05-27
Demo-image\12.jpg, 22357 , 2015-05-27
Demo-image\13.jpg, 11730 , 2013-03-24
Demo-image\14.jpg, 15632 , 2013-03-24
Demo-image\2.jpg, 155563 , 2015-05-27
Demo-image\3.jpg, 52060 , 2015-05-27
Demo-image\4.jpg, 127184 , 2015-05-27
Demo-image\5.jpg, 13811 , 2013-03-24
Demo-image\6.jpg, 16727 , 2013-03-24
Demo-image\7.jpg, 151037 , 2015-05-27
Demo-image\8.jpg, 138947 , 2015-05-27
Demo-image\9.jpg, 14759 , 2013-03-24
Demo-image\test, 0 , 2020-05-09
Demo-image\test\0.jpg, 52667 , 2020-04-21
Demo-image\test\0.jpg.txt, 5970 , 2020-04-23
Demo-image\test\1.jpg, 45562 , 2020-04-21
Demo-image\test\1.jpg.txt, 4633 , 2020-04-23
Demo-image\test\10.jpg, 56504 , 2020-04-21
Demo-image\test\10.jpg.txt, 4671 , 2020-04-23
Demo-image\test\11.jpg, 22861 , 2020-04-21
Demo-image\test\11.jpg.txt, 2884 , 2020-04-23
Demo-image\test\12.jpg, 13102 , 2020-04-21
Demo-image\test\12.jpg.txt, 5532 , 2020-04-23
Demo-image\test\13.jpg, 14343 , 2020-04-21
Demo-image\test\13.jpg.txt, 5435 , 2020-04-23
Demo-image\test\14.jpg, 19155 , 2020-04-23
Demo-image\test\14.jpg.txt, 6320 , 2020-04-23
Demo-image\test\2.jpg, 20783 , 2020-04-21
Demo-image\test\2.jpg.txt, 4115 , 2020-04-23
Demo-image\test\3.jpg, 53974 , 2020-04-21
Demo-image\test\3.jpg.txt, 5542 , 2020-04-23
Demo-image\test\4.jpg, 13718 , 2020-04-21
Demo-image\test\4.jpg.txt, 5774 , 2020-04-23
Demo-image\test\5.jpg, 9475 , 2020-04-21
Demo-image\test\5.jpg.txt, 4666 , 2020-04-23
Demo-image\test\6.jpg, 47424 , 2020-04-21
Demo-image\test\6.jpg.txt, 5205 , 2020-04-23
Demo-image\test\7.jpg, 34818 , 2020-04-21
Demo-image\test\7.jpg.txt, 5374 , 2020-04-23
Demo-image\test\8.jpg, 11194 , 2020-04-21
Demo-image\test\8.jpg.txt, 5287 , 2020-04-23
Demo-image\test\9.jpg, 3859 , 2020-04-21
Demo-image\test\9.jpg.txt, 2979 , 2020-04-23
Demo-image\u=2140437051,2007055591&fm=26&gp=0.jpg, 8892 , 2020-05-09
Demo.m, 1244 , 2020-04-23
GA_SVM_Demo.m, 973 , 2020-05-06
gaSVMcgForClass.m, 4351 , 2020-04-23
PSO_SVM_Demo.m, 807 , 2020-05-23
psoSVMcgForClass.m, 5928 , 2020-05-09
SVM_outputPicture.m, 2256 , 2020-05-24
test, 0 , 2020-05-09
test\1_01.jpg, 47431 , 2020-04-21
test\1_01.jpg.txt, 5465 , 2020-05-23
test\1_02.jpg, 11212 , 2020-04-21
test\1_02.jpg.txt, 4858 , 2020-05-23
test\1_03.jpg, 7350 , 2020-04-21
test\1_03.jpg.txt, 4096 , 2020-05-23
test\1_04.jpg, 12249 , 2020-04-21
test\1_04.jpg.txt, 5753 , 2020-05-23
test\1_05.jpg, 11837 , 2020-04-21
test\1_05.jpg.txt, 6228 , 2020-05-23
test\1_06.jpg, 10258 , 2020-04-21
test\1_06.jpg.txt, 5186 , 2020-05-23
test\1_07.jpg, 10492 , 2020-04-21
test\1_07.jpg.txt, 5177 , 2020-05-23
test\1_08.jpg, 10399 , 2020-04-21
test\1_08.jpg.txt, 4980 , 2020-05-23
test\1_09.jpg, 52667 , 2020-04-21
test\1_09.jpg.txt, 5970 , 2020-05-23
test\1_10.jpg, 50159 , 2020-04-21
test\1_10.jpg.txt, 5165 , 2020-05-23
test\2_01.jpg, 43136 , 2020-04-21
test\2_01.jpg.txt, 5450 , 2020-05-23
test\2_02.jpg, 41310 , 2020-04-21
test\2_02.jpg.txt, 5863 , 2020-05-23
test\2_03.jpg, 41105 , 2020-04-21
test\2_03.jpg.txt, 5690 , 2020-05-23
test\2_04.jpg, 64072 , 2020-04-21
test\2_04.jpg.txt, 6231 , 2020-05-23
test\2_05.jpg, 46495 , 2020-04-21
test\2_05.jpg.txt, 5142 , 2020-05-23
test\2_06.jpg, 9630 , 2020-04-21
test\2_06.jpg.txt, 4856 , 2020-05-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • reversible-information-hiding-new
    在保证图像质量的前提下,为了提高可逆信息隐藏的容量,提出了一种基于差值扩 展的可逆信息隐藏新算法(The premise of guaranteeing the image quality, in order to improve the reversible capacity of information hiding, a difference expansion based on new algorithm for reversible information hiding)
    2020-11-05 15:59:51下载
    积分:1
  • LMS
    用于数字图像处理的椒盐噪声滤波的自适应算法,(Salt and pepper for digital image processing adaptive noise filtering algorithm)
    2013-09-06 10:23:41下载
    积分:1
  • SLMPTS
    说明:  SLM与PTS的融合(低复杂度),直接可运行(SLM and PTS)
    2010-04-14 11:58:53下载
    积分:1
  • secret-sharing-ideas
    针对图像秘密共享前需要像素置乱的问题,基于(t, n)门限多重秘密共享思想,提出一种免置乱的图像秘密共享方案,以第n+1人的秘密份额作为因子参与秘密分割与重构,加大相邻像素之间的差距(Based on (t, n) threshold multiple secret sharing ideas, and put forward a kind of scrambling image from secret sharing scheme to n+ 1 people share the secret as factors involved in secret segmentation and reconstruction, increase the gap between adjacent pixels)
    2012-04-10 16:25:00下载
    积分:1
  • SVM
    说明:  自己编的SVM代码,适合初学者,多多关注,,(SVM learning, suitable for beginners, rich code, SVM code, suitable for beginners, more attention)
    2020-10-19 16:40:52下载
    积分:1
  • matlab
    MATlab图像分割源代码,包含边缘检测,区域分割,直方图(MATlabapplican)
    2009-05-04 11:47:00下载
    积分:1
  • OBMC
    此代码通过OBMC(重叠块运动补偿)实现了视频插帧运算。利用已有的运动向量和前后两帧图像,通过OBMC算法,求出中间内插帧(This video frame interpolation operator code OBMC (overlapped block motion compensation). Using the existing motion vectors and two of front and rear image is obtained through the the OBMC algorithm, intermediate interpolated frame)
    2020-10-12 23:47:31下载
    积分:1
  • kmeans
    说明:  利用kmeans方法进行图像分割的matlab代码,希望对大家有用(Kmeans method using image segmentation matlab code, in the hope that useful)
    2008-11-28 21:10:07下载
    积分:1
  • 新建文件夹
    说明:  图像重建算法当中的FDK、ART和TV算法,以及算法评估的SSIM和MSE的评估代码(FDK, ART and TV algorithms in image reconstruction algorithms, and the evaluation codes of SSM and MSE for algorithm evaluation)
    2020-07-16 11:48:49下载
    积分:1
  • D1
    说明:  实现了双线性插值、三次样条插值、B样条插值和最大阶次优化差值等传统多项式图像插值办法(Traditional polynomial image interpolation methods such as bilinear interpolation, cubic spline interpolation, B spline interpolation and maximum order optimization difference are realized.)
    2019-05-23 22:55:46下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载