登录
首页 » matlab » 核自适应滤波KAF备份

核自适应滤波KAF备份

于 2020-08-07 发布
0 205
下载积分: 1 下载次数: 4

代码说明:

说明:  适用于初学者练习和入门,里面有几种基础算法的源码和练习版本,需要对照书去学习(Suitable for beginners and beginners, there are several basic algorithm source code and exercise version, need to learn the reference book)

文件列表:

核自适应滤波KAF备份\src, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART1.m, 2526 , 2016-08-08
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART2.m, 3968 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction, 0 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\ker_eval.m, 752 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1.m, 2143 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1_LC.m, 2866 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS3.m, 3327 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\LMS1.m, 1454 , 2020-07-08
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART1.m, 2449 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART10.m, 4385 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART2.m, 4056 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART3.m, 2750 , 2020-06-09
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART4.m, 4666 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART5.m, 5051 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART6.m, 5173 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART7.m, 5052 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART8.m, 4027 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART9.m, 7351 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\regularizationNetwork.m, 1579 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study1LMS1.m, 585 , 2020-06-05
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study2LMS.m, 174 , 2020-06-06
核自适应滤波KAF备份\src\ch2_codes\regularization_function, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\regularization_function\regularizationfuntion.m, 2102 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1.m, 2160 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1s.m, 1858 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1s.m, 1705 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS2.m, 2163 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART1.m, 8351 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART2.m, 9302 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART3.m, 5888 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1.m, 4866 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1s.m, 4207 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2.m, 5095 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2s.m, 4443 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1s.m, 3635 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA1.m, 4217 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA2.m, 4454 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KLMS1.m, 2863 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KRLS.m, 3093 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART1.m, 6174 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART2.m, 7571 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\slidingWindowKRLS.m, 3632 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA1.m, 4626 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA2.m, 4870 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\fmri.mat, 1580350 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\LMS2.m, 2395 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART1.m, 5662 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART2.m, 4786 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKAPA2.m, 4393 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKLMS1.m, 3517 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\KRLS_ALDs.m, 3705 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.asv, 3857 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.m, 3834 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.asv, 3740 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.m, 3945 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.asv, 3639 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.m, 3693 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\gpr, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxEP.m, 5097 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approximations.m, 1936 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxLA.m, 3094 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryEPGP.m, 2671 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryGP.m, 6941 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryLaplaceGP.m, 3071 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Contents.m, 2656 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Copyright, 776 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covConst.m, 774 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covFunctions.m, 4136 , 2006-05-15
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINard.m, 1046 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINone.m, 984 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern3iso.m, 1392 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern5iso.m, 1417 , 2007-06-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ciccomp
    计算CIC补偿滤波器系数 Matlab源代码(method of calculate CIC compensation coefficients Matlab source code)
    2011-01-03 14:01:18下载
    积分:1
  • 4
    说明:  一个计算器的matlabgui设计,简单易懂,对于初学者值得下载(Matlabgui design a calculator, easy to understand, worth downloading for beginners)
    2011-01-24 15:45:25下载
    积分:1
  • rx_demodulate
    OFEM接收机的解调,检测合格,效果良好,本人亲测(the demodulation of OFDM receiver)
    2013-07-12 20:21:26下载
    积分:1
  • EULER
    尤拉法解ode,張鵬永老師傳授之數值方法(Euler method for solving ode, Zhang Pengyong teacher)
    2011-06-06 22:25:19下载
    积分:1
  • classification
    调制信号识别,利用设计的算法识别出调制信号。(Modulated signal identification, the use of algorithms to identify the design modulated signal.)
    2013-10-01 18:15:13下载
    积分:1
  • EVM_Matlab-1.1
    video processing matlab
    2015-04-10 20:59:28下载
    积分:1
  • ACATSP
    运用蚁群算法求解运营商的问题 有较详细的中文注释(Ant Colony Algorithm for the use of operators in more detail the issue of Chinese Notes)
    2009-05-05 21:10:40下载
    积分:1
  • fdtd3D
    说明:  在前面1维,2维的基础上继续推出3维的FDTD程序,可以帮助解决复杂的3维电磁散射问题,适用范围更广。这个程序给出计算要求的参数即可运行。(in front of one-dimensional, two-dimensional basis continue to offer three-dimensional FDTD procedures, which can help to solve the complex three-dimensional electromagnetic scattering problems, which have wider applicability. This procedure gives the parameters computing requirements can run.)
    2005-11-16 09:28:49下载
    积分:1
  • NORMALFUNCTION
    本程序基于visual C++ 实现标准正态分布,正态分布累积函数,正态分布累积函数的逆函数分别输出到不同表,是仿真实验的很好参考!(This procedure based on visual C++ Achieve the standard normal distribution, the cumulative distribution function, the cumulative distribution function of the inverse function of the respective output to a different form, is a good reference simulation!)
    2007-12-14 11:48:49下载
    积分:1
  • CHAPTER3
    pid自适应控制器学习和程序大家学习,很好用的(请求权)
    2010-09-17 10:53:30下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载