登录
首页 » matlab » 核自适应滤波KAF备份

核自适应滤波KAF备份

于 2020-08-07 发布
0 166
下载积分: 1 下载次数: 4

代码说明:

说明:  适用于初学者练习和入门,里面有几种基础算法的源码和练习版本,需要对照书去学习(Suitable for beginners and beginners, there are several basic algorithm source code and exercise version, need to learn the reference book)

文件列表:

核自适应滤波KAF备份\src, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART1.m, 2526 , 2016-08-08
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART2.m, 3968 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction, 0 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\ker_eval.m, 752 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1.m, 2143 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1_LC.m, 2866 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS3.m, 3327 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\LMS1.m, 1454 , 2020-07-08
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART1.m, 2449 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART10.m, 4385 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART2.m, 4056 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART3.m, 2750 , 2020-06-09
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART4.m, 4666 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART5.m, 5051 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART6.m, 5173 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART7.m, 5052 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART8.m, 4027 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART9.m, 7351 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\regularizationNetwork.m, 1579 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study1LMS1.m, 585 , 2020-06-05
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study2LMS.m, 174 , 2020-06-06
核自适应滤波KAF备份\src\ch2_codes\regularization_function, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\regularization_function\regularizationfuntion.m, 2102 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1.m, 2160 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1s.m, 1858 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1s.m, 1705 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS2.m, 2163 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART1.m, 8351 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART2.m, 9302 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART3.m, 5888 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1.m, 4866 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1s.m, 4207 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2.m, 5095 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2s.m, 4443 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1s.m, 3635 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA1.m, 4217 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA2.m, 4454 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KLMS1.m, 2863 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KRLS.m, 3093 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART1.m, 6174 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART2.m, 7571 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\slidingWindowKRLS.m, 3632 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA1.m, 4626 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA2.m, 4870 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\fmri.mat, 1580350 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\LMS2.m, 2395 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART1.m, 5662 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART2.m, 4786 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKAPA2.m, 4393 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKLMS1.m, 3517 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\KRLS_ALDs.m, 3705 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.asv, 3857 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.m, 3834 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.asv, 3740 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.m, 3945 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.asv, 3639 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.m, 3693 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\gpr, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxEP.m, 5097 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approximations.m, 1936 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxLA.m, 3094 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryEPGP.m, 2671 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryGP.m, 6941 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryLaplaceGP.m, 3071 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Contents.m, 2656 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Copyright, 776 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covConst.m, 774 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covFunctions.m, 4136 , 2006-05-15
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINard.m, 1046 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINone.m, 984 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern3iso.m, 1392 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern5iso.m, 1417 , 2007-06-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • moddemoofmsequence
    这是m序列的matlab调制和解调程序,值得一看哦(This is the Matlab m-sequence modulation and demodulation process, an eye-catcher oh)
    2007-03-20 14:20:11下载
    积分:1
  • HANMINGCODE
    matlab的m文件,是关于汉明码编码的,文件可以直接运行(matlab m-file is on the Hamming code, files can be run directly)
    2013-08-31 18:58:50下载
    积分:1
  • MAS
    induction motor matlab simulink
    2014-10-29 23:35:39下载
    积分:1
  • jeghmrht
    matlab小波分析程序,主要是基于mtlab的程序,基于互功率谱的时延估计,一种流形学习算法(很好用),旋转机械二维全息谱计算。( matlab wavelet analysis program, Mainly based on the mtlab procedures, Based on the time delay estimation of power spectrum, A fluid manifold learning algorithm (good use), Rotating machinery 2-d holographic spectrum calculation.)
    2016-03-19 20:03:51下载
    积分:1
  • u1u2
    说明:  利用反步法设计的控制律,进行轨迹跟踪仿真。(Using the control law designed by backstepping, the trajectory tracking simulation is carried out.)
    2020-04-01 23:20:16下载
    积分:1
  • Apsmpdemo1
    说明:  一个casio dt 900 源代码,仅供参考!(A casio dt 900 source code for reference purposes only!)
    2011-03-02 11:33:57下载
    积分:1
  • pls1
    一个自己编写的基于简化算法的单因变量的偏最小二乘回归,附带建模预测及奇异点的鉴别。(I have written a simplified algorithm based on a single by partial least squares regression, with model prediction and singular points of differentiation.)
    2010-05-18 14:16:12下载
    积分:1
  • SOR
    SOR迭代法求线性行放程组。看来功能可以很好地饿实现,不过得自己编写方程组和向量(SOR stationary calculate the )
    2011-12-28 16:09:48下载
    积分:1
  • Simulation-of-Cascade-PID-Control
    串级控制系统matlab仿真的一个实例,对化工过程中的一个过程进行串级控制,优化,用到PID算法(Cascade cascade control system matlab simulation of an instance of a process in the chemical process control, optimization, used in the PID algorithm)
    2021-01-29 17:08:34下载
    积分:1
  • ihs
    在matlab中实现基于IHS的多光谱图像和全色高分辨率图像的融合,效果十分良好。(The integration of the IHS-based multi-spectral image and panchromatic high-resolution images in matlab, the effect is very good.)
    2012-05-01 14:45:57下载
    积分:1
  • 696518资源总数
  • 105547会员总数
  • 4今日下载