登录
首页 » Visual C++ » MRF_imgSeg

MRF_imgSeg

于 2021-03-18 发布
0 248
下载积分: 1 下载次数: 0

代码说明:

说明:  是马尔可夫图像分割的C++程序,可以用于遥感图像(It's a C++ program for Markov image segmentation, which can be applied to remote sensing images.)

文件列表:

MRF_imgSeg\Debug\BscMake.command.1.tlog, 598 , 2017-10-07
MRF_imgSeg\Debug\bscmake.read.1.tlog, 880 , 2017-10-07
MRF_imgSeg\Debug\bscmake.write.1.tlog, 452 , 2017-10-07
MRF_imgSeg\Debug\cl.command.1.tlog, 3298 , 2017-10-07
MRF_imgSeg\Debug\CL.read.1.tlog, 50300 , 2017-10-07
MRF_imgSeg\Debug\CL.write.1.tlog, 1708 , 2017-10-07
MRF_imgSeg\Debug\link-cvtres.read.1.tlog, 2 , 2017-10-07
MRF_imgSeg\Debug\link-cvtres.write.1.tlog, 2 , 2017-10-07
MRF_imgSeg\Debug\link.command.1.tlog, 2718 , 2017-10-07
MRF_imgSeg\Debug\link.read.1.tlog, 7160 , 2017-10-07
MRF_imgSeg\Debug\link.write.1.tlog, 1000 , 2017-10-07
MRF_imgSeg\Debug\mrf.obj, 22844 , 2017-10-07
MRF_imgSeg\Debug\mrf.sbr, 0 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.bsc, 11471872 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.Build.CppClean.log, 2211 , 2017-08-05
MRF_imgSeg\Debug\MRF_imgSeg.exe, 6229504 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.exe.embed.manifest, 667 , 2017-08-05
MRF_imgSeg\Debug\MRF_imgSeg.exe.embed.manifest.res, 732 , 2017-08-05
MRF_imgSeg\Debug\MRF_imgSeg.exe.intermediate.manifest, 381 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.ilk, 14844752 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.lastbuildstate, 64 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.log, 2783 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.obj, 30869 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.pch, 48824320 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.pdb, 23055360 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg.res, 12812 , 2017-08-05
MRF_imgSeg\Debug\MRF_imgSeg.sbr, 0 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSegDlg.obj, 85410 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSegDlg.sbr, 0 , 2017-10-07
MRF_imgSeg\Debug\MRF_imgSeg_manifest.rc, 216 , 2017-08-05
MRF_imgSeg\Debug\mt.command.1.tlog, 742 , 2017-10-07
MRF_imgSeg\Debug\mt.read.1.tlog, 628 , 2017-10-07
MRF_imgSeg\Debug\mt.write.1.tlog, 446 , 2017-10-07
MRF_imgSeg\Debug\rc.command.1.tlog, 1020 , 2017-08-05
MRF_imgSeg\Debug\rc.read.1.tlog, 6064 , 2017-08-05
MRF_imgSeg\Debug\rc.write.1.tlog, 422 , 2017-08-05
MRF_imgSeg\Debug\roi_add.exe, 98816 , 2017-07-17
MRF_imgSeg\Debug\StdAfx.obj, 726086 , 2017-10-07
MRF_imgSeg\Debug\StdAfx.sbr, 6585040 , 2017-10-07
MRF_imgSeg\Debug\vc100.idb, 1649664 , 2017-10-07
MRF_imgSeg\Debug\vc100.pdb, 3338240 , 2017-10-07
MRF_imgSeg\mrf.cpp, 6185 , 2008-07-17
MRF_imgSeg\mrf.h, 1027 , 2008-07-17
MRF_imgSeg\MRF_IMGSEG\Debug\cl.command.1.tlog, 2506 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\CL.read.1.tlog, 2034 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\CL.write.1.tlog, 1230 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\MRF_IMGSEG.lastbuildstate, 64 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\MRF_IMGSEG.log, 1953 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\MRF_IMGSEG.unsuccessfulbuild, 0 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\MRF_IMGSEG.write.1.tlog, 0 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\vc100.idb, 19456 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Debug\vc100.pdb, 36864 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\mrf.cpp, 6185 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\mrf.h, 1027 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_imgSeg.cpp, 2119 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_imgSeg.h, 1368 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_IMGSEG.vcxproj, 3899 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_IMGSEG.vcxproj.filters, 1703 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_IMGSEG.vcxproj.user, 143 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_imgSegDlg.cpp, 7195 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\MRF_imgSegDlg.h, 1828 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\Resource.h, 826 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\StdAfx.cpp, 1647 , 2017-07-18
MRF_imgSeg\MRF_IMGSEG\StdAfx.h, 1382 , 2017-07-18
MRF_imgSeg\MRF_imgSeg.aps, 35760 , 2008-07-17
MRF_imgSeg\MRF_imgSeg.clw, 1244 , 2008-07-18
MRF_imgSeg\MRF_imgSeg.cpp, 2119 , 2008-07-16
MRF_imgSeg\MRF_imgSeg.dsp, 4409 , 2008-07-18
MRF_imgSeg\MRF_imgSeg.dsw, 543 , 2008-07-16
MRF_imgSeg\MRF_imgSeg.h, 1368 , 2008-07-16
MRF_imgSeg\MRF_imgSeg.ncb, 66560 , 2008-07-18
MRF_imgSeg\MRF_imgSeg.opt, 52736 , 2008-07-18
MRF_imgSeg\MRF_imgSeg.plg, 770 , 2008-07-18
MRF_imgSeg\MRF_imgSeg.rc, 5398 , 2008-07-17
MRF_imgSeg\MRF_imgSeg.sdf, 68440064 , 2017-10-07
MRF_imgSeg\MRF_imgSeg.sln, 886 , 2017-10-07
MRF_imgSeg\MRF_imgSeg.suo, 19968 , 2017-10-07
MRF_imgSeg\MRF_imgSeg.vcxproj, 8492 , 2017-10-07
MRF_imgSeg\MRF_imgSeg.vcxproj.filters, 2111 , 2017-10-07
MRF_imgSeg\MRF_imgSeg.vcxproj.user, 143 , 2017-07-17
MRF_imgSeg\MRF_imgSegDlg.cpp, 7195 , 2008-07-17
MRF_imgSeg\MRF_imgSegDlg.h, 1828 , 2008-07-17
MRF_imgSeg\ReadMe.txt, 3651 , 2008-07-16
MRF_imgSeg\res\MRF_imgSeg.ico, 1078 , 2008-07-16
MRF_imgSeg\res\MRF_imgSeg.rc2, 402 , 2008-07-16
MRF_imgSeg\Resource.h, 826 , 2008-07-17
MRF_imgSeg\StdAfx.cpp, 1647 , 2008-07-17
MRF_imgSeg\StdAfx.h, 1382 , 2008-07-17
MRF_imgSeg\ipch\mrf_imgseg-1bf90b8c, 0 , 2017-10-07
MRF_imgSeg\MRF_IMGSEG\Debug, 0 , 2017-07-18
MRF_imgSeg\Debug, 0 , 2017-10-07
MRF_imgSeg\ipch, 0 , 2017-10-07
MRF_imgSeg\MRF_IMGSEG, 0 , 2017-07-18
MRF_imgSeg\res, 0 , 2017-07-17
MRF_imgSeg, 0 , 2017-10-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • weinafilter
    本程序可实现维纳滤波,可应用于反褶积等反问题的求解过程中,是非常简单实用的(This program can be realized Wiener filter can be applied to deconvolution inverse problems and the process is very simple and practical)
    2016-07-25 20:18:58下载
    积分:1
  • HOG-adaboost
    HOG adaboost pedestrian-detect
    2014-04-09 02:59:39下载
    积分:1
  • DarkChannelPrior
    目标物与摄像机距离已知的情况下,计算白天大气能见度距离。(The distance between the object and the camera is known to calculate the visibility distance in daytime.)
    2017-01-20 14:10:32下载
    积分:1
  • EDLines 快速直线检测算子
    EDLines是一种快速直线检测算子,2012年在ICCV上提出,也是目前处理直线检测最快的算法之一,该算法包含三个步骤:(1)边缘提取:利用Edge Drawing (ED)算法[28,29]从灰度图像中提取边缘片段;(2)线段检测:利用最小二乘法提取直线段;(3)线段确认:遵循Helmholtz定律,从已提取的直线段中摒弃虚假线段。EDLines算法的优越性得益于Edge Drawing (ED)算法能够从灰度图像中准确、快速、稳定地提取出光滑、完整的边缘片段。Edge Drawing (ED)算法包含以下步骤: (1)采用size=5*5,σ=1的高斯核对灰度图像进行平滑滤波,去除噪声; (2)采用一种常用的梯度算子,如Prewitt、Sobel或Scharr等计算平滑后图像中每个像素点的梯度幅度和梯度方向; (3)将梯度图中邻域内幅度最大的像素点标记为锚点,这些锚点成为图像边缘点(edge elements)的概率很大; (4)将相邻的锚点连接成边缘线。从一个锚点起始,ED利用相邻像素的梯度幅度和方向在梯度为最大值的锚点之间游走。 (Edge Drawing (ED) is our recently-proposed, novel, fast edge detection algorithm. What makes ED stand out the existing edge detectors, e.g., Canny, is the following: While the other edge detectors give out a binary edge image as output, where the etected edge pixels are usually independent, discontinuous entities ED produces a set of edge segments, which are clean, contiguous, i.e., connected, chains of edge pixels. Thus, while the output of the other edge detectors requires urther processing to generate potential object boundaries, which may not even be possible or result in inaccuracies ED not only produces perfectly connected object boundaries by default, but it also achieves this in blazing speed compared to other edge detector.)
    2021-03-22 16:29:16下载
    积分:1
  • 基于opencv的Kinect深度的去噪,滤波
    基于opencv的Kinect深度图像的去噪,滤波(Opencv based Kinect depth image denoising, filtering)
    2021-03-23 08:59:15下载
    积分:1
  • live-wire_contour_version_matlab
    自己写的matlab版的live-wire算法,效率有点低,不过可用(Written in Matlab version, the live-wire algorithm, a bit low, but available)
    2012-04-24 09:10:27下载
    积分:1
  • 1-s2.0-S0925753510002559-main.pdf
    I WANT SOURCE CODE FOR IMAGE SEGMENTATION
    2013-07-31 14:23:59下载
    积分:1
  • Z_buffer
    计算机图形学基础算法z-buffer, 实现隐藏面消除(Computer graphics based algorithm z-buffer, to achieve hidden surface removal)
    2020-07-24 14:38:43下载
    积分:1
  • 135475202135
    画图源程序-图像数据显示,可以对数据进行时间轴的曲线显示,也可以是空间轴的多维显示 (Paint source- the image data, the data can be curve shows the time axis, it can be multi-dimensional display space axis)
    2014-02-08 12:55:53下载
    积分:1
  • sift2
    SIFT特征提取 http://www.opencvchina.com/forum.php?mod=viewthread&tid=209&fromuid=267 (SIFT feature extraction http://www.opencvchina.com/forum.php?mod=viewthread& tid=209& fromuid=267)
    2012-08-19 15:09:14下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载