登录
首页 » Python » MeshCNN-master

MeshCNN-master

于 2020-10-07 发布
0 185
下载积分: 1 下载次数: 1

代码说明:

说明:  三维mesh分割,用于解决分割问题,MeshCNN: A Network with an Edge(3D mesh segmentation)

文件列表:

MeshCNN-master, 0 , 2020-03-09
MeshCNN-master\.gitignore, 65 , 2020-03-09
MeshCNN-master\.travis.yml, 643 , 2020-03-09
MeshCNN-master\LICENSE, 1069 , 2020-03-09
MeshCNN-master\README.md, 3656 , 2020-03-09
MeshCNN-master\data, 0 , 2020-03-09
MeshCNN-master\data\__init__.py, 1113 , 2020-03-09
MeshCNN-master\data\base_dataset.py, 2251 , 2020-03-09
MeshCNN-master\data\classification_data.py, 2338 , 2020-03-09
MeshCNN-master\data\segmentation_data.py, 3331 , 2020-03-09
MeshCNN-master\docs, 0 , 2020-03-09
MeshCNN-master\docs\imgs, 0 , 2020-03-09
MeshCNN-master\docs\imgs\T18.png, 258821 , 2020-03-09
MeshCNN-master\docs\imgs\T252.png, 175222 , 2020-03-09
MeshCNN-master\docs\imgs\T76.png, 311291 , 2020-03-09
MeshCNN-master\docs\imgs\alien.gif, 830076 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_alien.png, 190558 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_chair.png, 349189 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_vase.png, 253075 , 2020-03-09
MeshCNN-master\docs\imgs\cubes.png, 126036 , 2020-03-09
MeshCNN-master\docs\imgs\cubes2.png, 113965 , 2020-03-09
MeshCNN-master\docs\imgs\input_edge_features.png, 18900 , 2020-03-09
MeshCNN-master\docs\imgs\mesh_conv.png, 16958 , 2020-03-09
MeshCNN-master\docs\imgs\mesh_pool_unpool.png, 55354 , 2020-03-09
MeshCNN-master\docs\imgs\meshcnn_overview.png, 480067 , 2020-03-09
MeshCNN-master\docs\imgs\shrec16_train.png, 31439 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__10_0.png, 150036 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__14_0.png, 168645 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__2_0.png, 152258 , 2020-03-09
MeshCNN-master\docs\index.html, 9120 , 2020-03-09
MeshCNN-master\docs\mainpage.css, 944 , 2020-03-09
MeshCNN-master\environment.yml, 244 , 2020-03-09
MeshCNN-master\models, 0 , 2020-03-09
MeshCNN-master\models\__init__.py, 149 , 2020-03-09
MeshCNN-master\models\layers, 0 , 2020-03-09
MeshCNN-master\models\layers\__init__.py, 0 , 2020-03-09
MeshCNN-master\models\layers\mesh.py, 8596 , 2020-03-09
MeshCNN-master\models\layers\mesh_conv.py, 3344 , 2020-03-09
MeshCNN-master\models\layers\mesh_pool.py, 8978 , 2020-03-09
MeshCNN-master\models\layers\mesh_prepare.py, 17520 , 2020-03-09
MeshCNN-master\models\layers\mesh_union.py, 1522 , 2020-03-09
MeshCNN-master\models\layers\mesh_unpool.py, 1572 , 2020-03-09
MeshCNN-master\models\mesh_classifier.py, 4744 , 2020-03-09
MeshCNN-master\models\networks.py, 14583 , 2020-03-09
MeshCNN-master\options, 0 , 2020-03-09
MeshCNN-master\options\__init__.py, 0 , 2020-03-09
MeshCNN-master\options\base_options.py, 4686 , 2020-03-09
MeshCNN-master\options\test_options.py, 635 , 2020-03-09
MeshCNN-master\options\train_options.py, 2701 , 2020-03-09
MeshCNN-master\scripts, 0 , 2020-03-09
MeshCNN-master\scripts\coseg_seg, 0 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\get_data.sh, 272 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\get_pretrained.sh, 324 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\test.sh, 309 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\train.sh, 551 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\view.sh, 191 , 2020-03-09
MeshCNN-master\scripts\cubes, 0 , 2020-03-09
MeshCNN-master\scripts\cubes\get_data.sh, 278 , 2020-03-09
MeshCNN-master\scripts\cubes\get_pretrained.sh, 292 , 2020-03-09
MeshCNN-master\scripts\cubes\test.sh, 225 , 2020-03-09
MeshCNN-master\scripts\cubes\train.sh, 238 , 2020-03-09
MeshCNN-master\scripts\cubes\view.sh, 235 , 2020-03-09
MeshCNN-master\scripts\dataprep, 0 , 2020-03-09
MeshCNN-master\scripts\dataprep\blender_process.py, 3290 , 2020-03-09
MeshCNN-master\scripts\human_seg, 0 , 2020-03-09
MeshCNN-master\scripts\human_seg\get_data.sh, 295 , 2020-03-09
MeshCNN-master\scripts\human_seg\get_pretrained.sh, 286 , 2020-03-09
MeshCNN-master\scripts\human_seg\test.sh, 303 , 2020-03-09
MeshCNN-master\scripts\human_seg\train.sh, 310 , 2020-03-09
MeshCNN-master\scripts\human_seg\view.sh, 104 , 2020-03-09
MeshCNN-master\scripts\shrec, 0 , 2020-03-09
MeshCNN-master\scripts\shrec\get_data.sh, 292 , 2020-03-09
MeshCNN-master\scripts\shrec\get_pretrained.sh, 277 , 2020-03-09
MeshCNN-master\scripts\shrec\test.sh, 230 , 2020-03-09
MeshCNN-master\scripts\shrec\train.sh, 263 , 2020-03-09
MeshCNN-master\scripts\shrec\view.sh, 174 , 2020-03-09
MeshCNN-master\scripts\test_general.py, 2390 , 2020-03-09
MeshCNN-master\test.py, 656 , 2020-03-09
MeshCNN-master\train.py, 2145 , 2020-03-09
MeshCNN-master\util, 0 , 2020-03-09
MeshCNN-master\util\__init__.py, 0 , 2020-03-09
MeshCNN-master\util\mesh_viewer.py, 5031 , 2020-03-09
MeshCNN-master\util\util.py, 2030 , 2020-03-09
MeshCNN-master\util\writer.py, 2948 , 2020-03-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 周志华-机器学习-课件
    周志华机器学习的课件 电子书 PPT的(python machine learning PPT)
    2020-11-13 09:19:44下载
    积分:1
  • chanlun笔
    说明:  MT4缠论分笔,对k线走势按照缠论定义规则进行分笔划分,划分出各周期分笔.(MT4 divides the trend of K-line according to the definition rules of entanglement theory, and divides each cycle into pens.)
    2019-04-02 17:54:58下载
    积分:1
  • vumat01
    jc模型中的vumat子程序,abaqus中开发(VUMAT subroutine in JC model, developed in ABAQUS)
    2018-10-31 11:30:48下载
    积分:1
  • zhixiandianjiqidongshiyan.rar
    直线电机的启动试验,希望对大家有所帮助!LABVIEW编写的。(Linear motor start-up test, and they hope to be helpful to everyone! LABVIEW prepared.)
    2008-05-15 10:08:31下载
    积分:1
  • 最终
    说明:  智能车四轮算法,光电组摄像头,使用的是逐飞科技的摄像头,文件包含路径识别和弯道处理(Intelligent vehicle four-wheel algorithm, photoelectric camera, using the technology of fly-by-fly camera, file contains path identification and bend processing)
    2020-06-18 09:40:01下载
    积分:1
  • Origin数字化(Digitize)插件
    数宇化插件为origin网站提供的极为有用的免费插件之一,该插件可将普通曲线图直接在origin中数字化.例如,以通过扫描仪将曲线图扫入计算机, 或在网上获取的电子资料曲线图等。这些以图形格式保存的曲线线,能方便地通过数字化插件在origin软件中数字化。
    2019-04-06下载
    积分:1
  • support vector clustering results of the program to preserve small little
    支持向量聚类的保存结果的源程序很小 不大-support vector clustering results of the program to preserve small little
    2023-01-02 17:20:22下载
    积分:1
  • python百度贴吧爬虫
    资源描述使用python编写百度贴吧的爬虫,爬取帖子的时间、内容、以及回复人,利用了requests库文件,包含在内,直接把它copy到python的lib文件夹内即可。但需要安装其他的插件lxml。
    2023-03-10 14:10:04下载
    积分:1
  • kendo.office365
    Implementing a general matrix processing library to achieve the effect similar to MatLab processing
    2020-06-24 06:20:02下载
    积分:1
  • 06
    说明:  C#4.0中文视频教程第六讲程序中的异常和错误处理(C#4.0 Chinese Video Course Lecture 6 Abnormal and Error Handling in Program)
    2020-06-17 20:00:02下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载