登录
首页 » Python » Pytorch-Deep-Neural-Networks-master

Pytorch-Deep-Neural-Networks-master

于 2020-10-14 发布
0 161
下载积分: 1 下载次数: 0

代码说明:

说明:  Pytorch-Deep-Neural-Networks-master

文件列表:

Pytorch-Deep-Neural-Networks-master, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\README.md, 6475 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\conv_module.py, 18008 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\epoch.py, 13793 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\func.py, 8011 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\layer.py, 11062 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\module.py, 13446 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\pre_module.py, 4064 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\core\run_n.py, 4202 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\processed, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\processed\test.pt, 7920462 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\processed\training.pt, 47520462 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\raw, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\raw\t10k-images-idx3-ubyte, 7840016 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\raw\t10k-labels-idx1-ubyte, 10008 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\raw\train-images-idx3-ubyte, 47040016 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\MNIST\raw\train-labels-idx1-ubyte, 60008 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\TE[fault].xlsx, 5797241 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\TE[var].xlsx, 3652841 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d00_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d01_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d02_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d03_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d04_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d05_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d06_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d07_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d08_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d09_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d10_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d11_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d12_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d13_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d14_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d15_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d16_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d17_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d18_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d19_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d20_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\test\d21_te.dat, 799680 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d00.dat, 416500 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d01.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d02.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d03.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d04.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d05.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d06.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d07.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d08.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d09.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d10.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d11.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d12.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d13.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d14.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d15.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d16.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d17.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d18.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d19.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d20.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\TE\train\d21.dat, 399840 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\dsae_dataset.py, 870 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\gene_dynamic_data.py, 10146 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\data\load.py, 3101 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\cross_entropy_loss.py, 2812 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\mnist_cls.py, 1887 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\simple_ae.py, 4379 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\te_cls.py, 1104 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\understand_gradient.py, 3670 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\example\vae_generate.py, 666 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\image, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\image\CD-K.jpg, 406898 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\image\EDBN.jpg, 747816 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\README.md, 3481 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\cnn.py, 1191 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\connect.py, 992 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\dae.py, 1878 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\dbn.py, 5336 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\dnn.py, 1063 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\dsae.py, 5043 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\mmdgm_vae.py, 2584 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\resnet.py, 5736 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\sae.py, 3829 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\svm.py, 5279 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\vae.py, 3080 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\vgg.py, 5061 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\model\vision.py, 670 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\visual, 0 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\visual\plot.py, 12886 , 2020-06-08
Pytorch-Deep-Neural-Networks-master\visual\visual_weight.py, 8599 , 2020-06-08

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 数字图像几何变换
    几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。 作为数字图像处理的一个重要部分,本文介绍的工作是如何用Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。即首先用Visual C++创建一个多文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。 (geometric transformation is the most common means of image processing, image deformation of geometric correction, can be an accurate picture. Transform common geometric features include image translation, the mirror image transform, image transfer home, image scaling, image rotation and so on. Current digital image processing applications have become wider, and have penetrated into the industrial, aerospace, military and other areas, the national economy will play an increasingly larger role. Digital image processing as a vital part of the work presented in this paper is how to use Visual C programming tools to design a complete application procedures and achieve the classic image geometry transform function. Procedures probably be divided into two parts : the reader BMP images, and digita)
    2018-10-09 14:47:51下载
    积分:1
  • Num_clock
    VC6.0环境下实现的数字显示时间和日期的一个数字钟表,主要运用了C++的继承。(VC6.0 environment figures show the time and date of a digital watch, mainly use the C++ succession.)
    2013-03-10 02:44:39下载
    积分:1
  • cPPbuilder
    c++ builder 可以导出相应的DBGrid里面的数据(c++ builder can export the data inside the corresponding DBGrid)
    2013-11-29 21:08:28下载
    积分:1
  • RC522_RST
    RC522_RST.rar R C522_RST.rar(RC522_RST.rar R C522_RST. rar)
    2006-07-08 15:26:24下载
    积分:1
  • qwt_text
    利用QWT在QT环境中进行数据波形的显示,其中数据采集利用PXI2208采集卡,共进行8路信号的显示(Using QWT in the QT environment for data waveform display, which data acquisition using PXI2208 acquisition card, a total of 8-way signal display)
    2017-05-08 11:18:50下载
    积分:1
  • directPUI
    directUI的一些经典例子源码,360皮肤,按钮,暴风影音皮肤,界面,十分实用(directUI some of the classic examples of source code, 360 skins, buttons, STORM skin, interface, very useful)
    2014-10-29 21:06:37下载
    积分:1
  • very_useful_SmartEdit
    说明:  非常有用的智能编辑框。过滤非设定的输入字符,可以设定为NUMBER、LETTER、FLOATINGPT、OTHERCHAR、SIGNED、UNDERSCORE。(Very useful smart edit box. Filtering of non-setting input characters can be set to NUMBER, LETTER, FLOATINGPT, OTHERCHAR, SIGNED, UNDERSCORE.)
    2008-08-29 21:59:40下载
    积分:1
  • read
    含有一个 CSpreadSheet类实现对Excel文件的读写的封装(Contains a CSpreadSheet class implements encapsulation of Excel file to read and write)
    2017-03-23 22:42:08下载
    积分:1
  • Qt
    说明:  MP422e用QT开发测控系统课程设计。fft变换(MP422e uses QT to develop the course design of measurement and control system. FFT transform)
    2018-06-10 10:59:45下载
    积分:1
  • Demo
    vc如何实现快捷菜单的源码,有兴趣的朋友可以看下(vc how to source the shortcut menu, interested friends may have a look)
    2011-06-10 15:16:17下载
    积分:1
  • 696518资源总数
  • 105584会员总数
  • 19今日下载