登录
首页 » Python » 基于深度卷积神经网络图像去噪算法

基于深度卷积神经网络图像去噪算法

于 2020-10-15 发布
0 269
下载积分: 1 下载次数: 6

代码说明:

说明:  用于图像去噪处理,使用ADM方法图像去噪处理器处理(Used for image denoising processing, using adm method image denoising processor processing)

文件列表:

DnCNN-Denoise-Gaussian-noise-TensorFlow-master, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\DnCNN.py, 2950 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised1.jpg, 9243 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised2.jpg, 6945 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised3.jpg, 9026 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised4.jpg, 11065 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised5.jpg, 11102 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised6.jpg, 9139 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\denoised7.jpg, 10044 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\method.jpg, 39256 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised1.jpg, 20627 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised2.jpg, 17248 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised3.jpg, 18682 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised4.jpg, 20420 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised5.jpg, 19110 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised6.jpg, 20174 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\IMAGES\noised7.jpg, 21734 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\LICENSE, 1067 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\README.md, 3367 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\01.png, 38267 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\02.png, 34985 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\03.png, 40181 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\04.png, 42947 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\05.png, 40728 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\06.png, 40985 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\07.png, 39804 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\08.png, 151065 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\09.png, 185727 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\10.png, 177762 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\11.png, 209817 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TestingSet\12.png, 193637 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingResults, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingResults\0_1440.jpg, 1847 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingResults\0_1520.jpg, 1830 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingResults\0_1600.jpg, 2277 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_17.jpg, 674 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_18.jpg, 619 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_19.jpg, 648 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_20.jpg, 579 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_25.jpg, 665 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_26.jpg, 677 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_27.jpg, 640 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\TrainingSet\1_28.jpg, 611 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\config.py, 106 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\network.py, 557 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\ops.py, 4376 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\save_para, 0 , 2019-03-02
DnCNN-Denoise-Gaussian-noise-TensorFlow-master\save_para\READMEN.txt, 30 , 2019-03-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • brodatz
    图像纹理特征提取matlab,计算图像的粗糙度、方向度等特征。(Image texture feature extraction matlab, calculated image roughness, and other characteristics of the direction of degrees.)
    2008-12-16 15:54:25下载
    积分:1
  • huiduzhifang
    按照C语言程序实现对128x128像素点、256灰度等级灰度图像的灰度直方图显示(In accordance with the C language program to 128x128 pixels, 256 gray scale histogram display grayscale images)
    2014-06-20 23:30:42下载
    积分:1
  • FAST-ICA
    1、对观测数据进行中心化,; 2、使它的均值为0,对数据进行白化—>Z; 3、选择需要估计的分量的个数m,设置迭代次数p<-1 4、选择一个初始权矢量(随机的W,使其维数为Z的行向量个数); 5、利用迭代W(i,p)=mean(z(i,:).*(tanh((temp) *z)))-(mean(1-(tanh((temp)) *z).^2)).*temp(i,1)来学习W (这个公式是用来逼近负熵的) 6、用对称正交法处理下W 7、归一化W(:,p)=W(:,p)/norm(W(:,p)) 8、若W不收敛,返回第5步 9、令p=p+1,若p小于等于m,返回第4步 剩下的应该都能看懂了 基本就是基于负熵最大的快速独立分量分析算法(1, on the center of the observation data, 2, making a mean of 0, the data to whitening-> Z 3, select the number of components to be estimated m, setting the number of iterations p < -1 4, select an initial weight vector (random W, so that the Z dimension of the row vectors of numbers) 5, the use of iteration W (i, p) = mean (z (i, :).* (tanh ((temp) ' * z)))- (mean (1- (tanh ((temp)) ' * z). ^ 2)).* temp (i, 1) to learn W (This formula is used to approximate the negative entropy) 6 with symmetric orthogonal treatments W 7, normalized W (:, p) = W (:, p)/norm (W (:, p)) 8, if W does not converge, return to step 5 9 , so that p = p+1, if p less than or equal m, return to step 4 should be able to read the rest of the basic is based on negative entropy of the largest fast independent component analysis algorithm)
    2013-06-27 15:39:00下载
    积分:1
  • Edge-Thinning
    Gray Level Edge Thinning Method Abstract. An effective edge thinning algorithm is important in image segmentation and object identification since it increases the possibility of success in detecting objects in the image and saves the processing time in the further steps such as labeling and image transformation. We investigate some gray level edge thinning method that is based on the gradient magnitude within 3x3 local neighborhood. The new method has been tested with various types of images the real world. Experimental results show that this method produces more accurate images than those of the popular non-maximum suppression methods do.
    2016-09-13 22:05:34下载
    积分:1
  • POCS-SuperResulution
    说明:  用POCS方法对图像进行超分辨率重构,matlab源码,有解释(POCS method using super-resolution reconstruction of images, matlab source code, to explain)
    2021-03-19 19:39:19下载
    积分:1
  • cedif
    改进后的非线性各向异性扩散用于图像中的保边去噪,增加了二阶导数,是滤波效果更好(Improved nonlinear anisotropic diffusion for edge preserving image denoising, an increase of second derivative, is a better filtering effect)
    2010-09-28 16:21:59下载
    积分:1
  • imagefusion
    说明:  图像融合程序大全 (有图)包括IHS PCA 拉普拉斯 PCNN 小波 超好!(the total of image fusion (pictures))
    2021-03-08 19:29:28下载
    积分:1
  • PSO_kmeans-master
    说明:  利用改进的PSO算法对kmeans算子进行聚类,优化了步骤(The improved PSO algorithm is used to cluster kmeans operators, and the steps are optimized)
    2020-05-24 15:32:21下载
    积分:1
  • Local-Binary-Patterns
    局部二进制模式,LBP,是已被用于纹理特征的一个 分类。在本文中,提出了一种基于使用这些功能的方法 检测缺陷图案的面料。在培训阶段,在第一个步骤LBP算子是 施加到无缺陷织物样品,逐个象素和参考的所有的行(列) 特征矢量的计算。那么这个图像被分为Windows和LBP算子是 应用这些窗口的每一行(列)。根据与参考比较 特征向量一个合适的阈值,无缺陷的窗户被发现。在检测阶段中,一个 测试图像被划分成的窗户,并使用阈值时,有缺陷的窗口可以 检测到。该方法简单,灰度不变。由于其简单性, 线上实现是可能的。(Local Binary Patterns, LBP, is one of the features which has been used for texture classification. In this paper, a method based on using these features is proposed for detecting defects in patterned fabrics. In the training stage, at first step LBP operator is applied to all rows (columns) of a defect free fabric sample, pixel by pixel, and the reference feature vector is computed. Then this image is divided into windows and LBP operator is applied to each row (column) of these windows. Based on comparison with the reference feature vector a suitable threshold for defect free windows is found. In the detection stage, a test image is divided into windows and using the threshold, defective windows can be detected. The proposed method is simple and gray scale invariant. Because of its simplicity, online implementation is possible as well. )
    2014-05-26 22:42:00下载
    积分:1
  • 第6次课程序
    将两张图像进行图像相减或相处,使两张图片叠加。(The two images are subtracted or coexisted, so that the two images are superimposed.)
    2019-04-10 21:44:48下载
    积分:1
  • 696518资源总数
  • 106182会员总数
  • 24今日下载