登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 213
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DCT
    实现对一幅灰度和彩色图像作的离散余弦变换,选择适当的DCT系数阈值对其进行DCT反变换.(The realization of a piece of gray and color images for the discrete cosine transform, select the appropriate thresholds for DCT coefficients of its inverse transform DCT.)
    2008-12-13 21:51:01下载
    积分:1
  • 如何获取屏幕上各颜色的红、绿、蓝值
    如何获取屏幕上各颜色的红、绿、蓝值(how to access the colors on the screen in red, green and blue values)
    2004-11-22 15:31:50下载
    积分:1
  • Brovery
    说明:  经典的图像像素层融合算法-Brovery.程序输入中两幅图像需经过配准,大小一致。matlab代码内有详细的注释。其他像素层融合算法可仿照此修改即可。需要配对图像和运行结果、其它基于小波融合代码的可发邮件给我。非常乐意和大家共享编程乐趣。(classic image pixel level fusion algorithm-Brovery. Import procedures which require a two image registration, the same size. Matlab code with detailed comments. Other pixel level fusion algorithm can be modeled on this amendment. Image matching needs and operating results, the other based on wavelet integration code can mail it to me. Very happy to share programming and fun.)
    2006-04-07 18:11:13下载
    积分:1
  • 区域生长法
    本算法包括区域生长法和形态学后处理算法,功能实现了皮肤镜图像的病变区域分割,准确度很高,后处理算法对原图的影响很小;(This algorithm includes region growing method and morphological post-processing algorithm. It can segment the lesion area of dermoscopic image with high accuracy, and the post-processing algorithm has little influence on the original image.)
    2020-06-21 23:00:02下载
    积分:1
  • WaveAtom-1.1
    波原子变换代码,一种新的类方向小波变换,更好的表示图像(Wave atom transform code, the direction of a new class of wavelet transform, and better representation of the image)
    2009-12-15 09:39:37下载
    积分:1
  • VCPP-image-processing-chapter02
    VisualC++数字图像处理技术详解第2版光盘-第二章(VisualC++ digital image processing technology Detailed Version 2 CD- Chapter 2)
    2016-04-16 13:20:57下载
    积分:1
  • Glew开发环境测试
    测试Glew开发环境搭建是否成功,如果您成功的安装了对应的glut和glew库文件。(the test code for glew, to know is it working.)
    2020-06-22 01:00:01下载
    积分:1
  • CN_edgedetect
    本程序为二值图像的处理。通过一种称为CNED(connectivity number based edge detection)的方法对二值图像进行边缘提取。结果表明这种方法比candy sober 等算子更加精确,效果更好。(This procedure for binary image processing. Through a known CNED (connectivity number based edge detection) method for binary image edge extraction. The results show that this method, such as candy sober than the operator more precise, better.)
    2007-04-22 13:23:27下载
    积分:1
  • VehicleTracking-master
    关于车辆跟踪的c++程序,使用了opencv进行跟踪,采用了帧差方法效果还不错(vehicle detection)
    2014-12-24 13:49:47下载
    积分:1
  • Unet
    说明:  UNet最早发表在2015的MICCAI上,短短3年,引用量目前已经达到了4070,足以见得其影响力。而后成为大多做医疗影像语义分割任务的baseline,也启发了大量研究者去思考U型语义分割网络。而如今在自然影像理解方面,也有越来越多的语义分割和目标检测SOTA模型开始关注和使用U型结构,比如语义分割Discriminative Feature Network(DFN)(CVPR2018),目标检测Feature Pyramid Networks for Object Detection(FPN)(CVPR 2017)等。(Its influence has reached 70% in 2015. Then it became the baseline that most of the medical image semantic segmentation tasks, and inspired a large number of researchers to think about the U-shaped semantic segmentation network. In the aspect of natural image understanding, more and more SOTA models of semantic segmentation and object detection begin to pay attention to and use U-shaped structure, such as semantic segmentation, discriminative feature network (DFN) (cvpr2018), feature pyramid networks for object detection (FPN) (CVPR 2017), etc.)
    2020-12-07 13:11:13下载
    积分:1
  • 696518资源总数
  • 105549会员总数
  • 12今日下载