登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 248
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • vectfit
    基于矢量匹配法的快速实现程序,工程中较常用(Vector-based matching method for the rapid realization process, more commonly used engineering)
    2020-12-10 14:19:20下载
    积分:1
  • blacksphere
    在视图窗口显现一个黑色的球体,背景为浅蓝色。颜色对比强烈(View window appear in a black sphere, as a light blue background. Strong color contrast)
    2007-04-02 07:43:13下载
    积分:1
  • HistAdaptFuzz
    直方图自适应模糊分割算法,基于图像直方图统计信息的模糊分割算法,算法简单,速度快(Histogram adaptive fuzzy segmentation algorithm, based on image histogram statistics of the fuzzy segmentation algorithm, algorithm is simple, fast)
    2008-05-14 19:25:04下载
    积分:1
  • 像去噪(matlab)
    说明:  使用中值,均值,小波,DCT,PCA五种方法实现对图像的去噪处理。(Five methods, median, mean, wavelet, DCT and PCA, are used to denoise the image.)
    2021-01-05 15:28:54下载
    积分:1
  • WinSnakeEyes
    snake例子,可以帮助初学者深入具体的对SNAKE 的架构和算法思想进行理解(snake example, can help beginners depth of the Snake concrete structure and algorithm for understanding)
    2006-12-29 10:49:32下载
    积分:1
  • FFT_based phase screen simulation metods
    基于FFT以及次谐波的两种相位屏仿真方法源程序;主函数用于显示相位屏的二维和三维图像(FFT-based and subharmonic two phase screen simulation method source program; the main function is used to display two-dimensional and three-dimensional images of the phase screen.)
    2018-05-17 15:36:03下载
    积分:1
  • WhiteBalance
    说明:  实现图像处理中的白平衡调节问题, 可以帮助得到白平衡后的图像,内有帮助文档和实例图像(To achieve the white balance adjusted image processing problems, can help get the image after white balance, there are help files and examples of images)
    2010-04-07 23:26:17下载
    积分:1
  • facerecognition-wavelet-matlab
    基于小波的人脸识别算法的matlab实现(Face recognition based on wavelet algorithm to achieve the Matlab)
    2007-01-31 22:12:02下载
    积分:1
  • ex8-extractwatermark
    水印要求完全不被修改,完全脆弱水印一般是从空域LSB算法演变而来。(Watermark demands nothing to modify, the fragile watermark is completely general LSB algorithm has evolved the airspace。)
    2015-05-11 15:33:22下载
    积分:1
  • renlianshibie
    说明:  利用PCA对人脸图像进行降维,然后训练神经网络分类器的Matlab程序(the Matlab in face recoginization using PCA algorithm)
    2010-03-28 14:56:31下载
    积分:1
  • 696516资源总数
  • 106459会员总数
  • 0今日下载