登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 236
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • snake_gvf_demo
    说明:  GVF snakes. 最近学习用到的code,可以帮助图像处理入门级的学生了解GVF snake的实现。(GVF snakes. Recent study used the code, image processing can help entry-level students to understand the realization of GVF snake.)
    2008-11-12 09:55:11下载
    积分:1
  • Optical_bench
    用matlab实现了一系列示例:球差,慧差,像差,像散。(Using matlab to achieve a series of examples: spherical aberration, coma, aberration, astigmatism.)
    2020-06-28 19:40:01下载
    积分:1
  • gray2rgb
    将灰度图像装换成rgb图像的Matlab实现(transfer the gray image to rgb one)
    2009-06-19 23:08:20下载
    积分:1
  • reconstruction
    运用四边形网格实现医学图像皮肤组织的三维重建算法,对于医学图像的三维重建非常有用(Using quad to reconstruct the contour of skin , it is very useful for medical image reconstruction)
    2009-04-08 15:10:20下载
    积分:1
  • 波束成DBF
    说明:  声呐或者雷达系统发射信号后,通过波束形成算法对两个目标(方位分别为theta1、theta2)回波进行仿真,经过相位补偿,可以看出图像有两个波峰,波峰处指向性函数峰值最大,峰值所对应的的角度值即为目标的方位角。所以该程序对数字波束形成(DBF)的原理进行了仿真,适合初学者掌握阵列信号处理中数字波束形成的原理。(After the sonar or radar system transmits the signal, the echo of the two targets (the azimuth is theta1 and theta2 respectively) is simulated by the beamforming algorithm. After the phase compensation, it can be seen that the image has two peaks, the peak of the directivity function is the largest, and the corresponding angle value of the peak is the azimuth of the target. So the program simulates the principle of DBF, which is suitable for beginners to master the principle of DBF in array signal processing.)
    2020-06-26 21:00:01下载
    积分:1
  • HistDemoA
    说明:  VC做的图像直方图均衡化小程序,有助于学习图像处理基本知识(VC image histogram equalization do applet can help to learn basic knowledge of image processing)
    2009-08-31 14:36:38下载
    积分:1
  • 3d 算法
    3d 图形学的 算法,包含源代码(3d graphics algorithms, including source code)
    2005-01-12 15:05:42下载
    积分:1
  • zhongzhilvbo
    对图像进行中值滤波,代码调试通过,附有lena图像(The image is filtered by median filter, the code is debugged and passed, and the Lena image is attached.)
    2019-03-13 14:57:27下载
    积分:1
  • 像的小波变换处理
    说明:  运用小波变换将图像从空间域转换到频率域,自己写的代码,欢迎讨论学习(Using wavelet transform to transform image from spatial domain to frequency domain)
    2020-06-14 19:56:19下载
    积分:1
  • Information_hiding
    用加密代码将文字隐藏在图片中,用解密代码将文字提取。c++(The text is hidden in the picture with encrypted code, and the text is extracted with decryption code.)
    2017-11-27 20:04:12下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载