登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 247
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • XieFangXiangGuan
    协方相关算法获得电子散斑条纹图.带入变形前后两张散斑图片,可得到反映变形等势的条纹图形.(HS side-correlation algorithm to obtain the electronic speckle pattern. Into two speckle images before and after deformation, can reflect the deformation of equipotential stripes graphics.)
    2008-02-28 09:06:19下载
    积分:1
  • perform
    不错的SVM实现算法,采用的是LS-SVM算法,这是C版本,还有一个MATLAB版本(A good SVM implementation algorithm, using the LS-SVM algorithm, this is the C version, there is a MATLAB version)
    2018-08-04 07:50:30下载
    积分:1
  • JSteg
    JSteg隐写技术matlab实现代码--基本思想:用秘密信息比特直接替换JPEG图像中量化后DCT系数的最低比特位,但若量化后DCT系数为0或者1,则不进行处理。(DCT系数的LSB嵌入) (JSteg steganography matlab code- the basic idea: direct replacement with the secret information bits JPEG image quantized DCT coefficients in the least significant bit, but if the quantized DCT coefficient is 0 or 1, no processing. (DCT coefficients LSB embedding))
    2020-12-21 15:59:09下载
    积分:1
  • opencvchengxu
    特征提取,主要是灰度共生矩阵和不变矩特征提取的程序,openCV下可直接运行(Feature extraction, mainly GLCM and invariant moments feature extraction procedures can be run directly under openCV)
    2014-11-23 21:03:16下载
    积分:1
  • plt2dxf127
    plt文件转dxf(diverted dxf)
    2004-11-16 17:40:01下载
    积分:1
  • jQueryUploadifyDemo
    他很反感;归属地分块地方好法国号法国号韩国胡富国(He was disgusted attribution to block a good place to Hu Fuguo French horn French horn Korea)
    2013-11-02 11:16:46下载
    积分:1
  • DCTmatlab
    基于DCT变换的图像压缩matlab实现(附测试图)(DCT-based image compression transform matlab realize (with the test chart))
    2008-07-04 17:01:02下载
    积分:1
  • Fu-Liye-digital-image-transformation
    (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 ((1) be familiar with and master the Fourier transform (2) understand the Fourier transform in image processing applications (3) experiments to understand the characteristics of the two-dimensional distribution of the spectrum (4) simulation using MATLAB Fourier transform)
    2013-11-25 20:46:37下载
    积分:1
  • FFST
    shearlet变换,能够实现图像融合的代码,里面有例子和说明(Shearlet transform, to achieve image fusion code, which has examples and instructions)
    2020-10-13 20:27:32下载
    积分:1
  • uploadpic
    关于上传 图片的代码 上传图片的代码(关于上传 图片的代码 上传图片的代码)
    2013-07-10 11:28:39下载
    积分:1
  • 696516资源总数
  • 106459会员总数
  • 0今日下载