登录
首页 » Others » 解析相对定向及模型坐标的计算

解析相对定向及模型坐标的计算

于 2020-11-27 发布
0 282
下载积分: 1 下载次数: 1

代码说明:

确定两张像片的相对定向元素 建立模型,计算模型点坐标

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 软著使用说明书模板.docx
    中国版权保护中心接收登记的文档包含两种:操作说明书或设计说明书,软件著作权使用说明书范本,软著申请模板 软著模板 源程序 说明书
    2020-05-21下载
    积分:1
  • Matlab数字识别
    用Matlab实现的0-9个阿拉伯数字识别,代码全并且有注释,BP神经网入门的好例子~
    2020-11-30下载
    积分:1
  • fundamentals of wireless communication-David Tse中英文版加答案
    fundamentals of wireless communication-David Tse,整理了无线通信基础中英文版加答案,有需要的可以下载,象征性的要个3积分,实在没积分私信我私下发你。
    2020-12-01下载
    积分:1
  • JsonCpp 译库lib dll 示例代码VS2015版
    本资源为JsonCpp编译库测试代码,内含x86,x64版本的静态lib库,动态Dll库,及引用头文件,测试运行代码。本人专门整理供大家使用,减少不必要的麻烦。谢谢支持。
    2020-12-10下载
    积分:1
  • 弹塑性力学习.pdf
    较全面的弹塑性力学习题,包括了习题和习题详解两部分,涵盖了常见的多种弹塑力学题目,详细阐述了边界条件的应用,是学习此课程的重要参考用书
    2020-06-24下载
    积分:1
  • 熵值法的高效matlab源
    对熵值法实现了matlab的快速实现,使用者应该注意的是对数据的标准化处理有多样性,自己可以根据自己的情况合适修改相应的代码部分,本代码采用的是归一化处理,梅一列数据大小统一分布在【1,2】之间。
    2020-06-23下载
    积分:1
  • 端口扫描TCP扫描UDP扫描TCP多线扫描
    端口扫描、TCP扫描、UDP扫描、TCP多线程扫描
    2020-12-11下载
    积分:1
  • 粒子群优化算法Matlab源
    这个程序就是最基本的粒子群优化算法程序,用Matlab实现,非常简单。只有几十行代码。下面是主函数的源程序,优化函数则以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可以了通用性很强。
    2020-12-01下载
    积分:1
  • MODTRAN介绍及使用PPT
    介绍了MODTRAN及常用大气辐射模型,并且讲解了tape5和PC版MODTRAN的使用方法及参数设置。
    2020-12-04下载
    积分:1
  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载