登录
首页 » Others » matlab粒子群算法辨识传递函数模型(包括5种模型结构)

matlab粒子群算法辨识传递函数模型(包括5种模型结构)

于 2020-11-27 发布
0 333
下载积分: 1 下载次数: 11

代码说明:

matlab代码,直接应用输入输出数据辨识传递函数模型,且包含多种传递函数模型结构的辨识

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于VMD算法的信号降噪.rar
    【实例简介】针对论文:基于VMD的故障特征信号提取方法,本人对论文中的仿真信号部分进行了复现,首先产生仿真信号;其次,利用VMD对信号进行分解,运用排列熵确定含高噪分量,然后对低噪分量进行重构;最后,将重构的信号进行分解,发现分量与最初的原始仿真信号基本一致。说明去噪效果较好。
    2021-11-22 00:36:24下载
    积分:1
  • 电子时钟/万年历设计报告 基于AT89c51
    1.硬件﹑软件方案的设计说明。2.用PROTEL工具软件画出系统电路原理图,系统元件布局﹑布线图。3.系统的元器件清单。4.提供程序流程图。5.提供源程序清单(带中文注释)。6.提供系统的使用和操作说明。7.对创新设计和功能,请特别加以陈述。有闹钟 按键有无声转换 整点提示 闹钟状态查看日期 时间可调及转换显示
    2020-12-01下载
    积分:1
  • Vivado约束指导手册
    Vivado约束指导手册输入端口到输出端口路径在从输入端口直接到输出端口的路径上,数据:不需要在器件内部锁存(atch),直接从输入端口到输出端口。他们通常被称为ln-to-out数据路径端口时钟可以是虚拟时钟也可以是设计时钟路径举例图3-1描述了上面所有的路径,在此例图中,设计时钟CLKo可被用作端口时钟,这样既可以约束D|N延时也可以约束DOUT延时FPGA DEVICEBoardDeviceInternal Delay REGAData Path DelayREGB Internal DelayBoardDINi DOUT Device○A4InpOutputDelayBUFGPort ClockCLKOPort clockIn-2-out Data PathFigure 3-1: Path Example时钟路径部分每一个时钟路径由三个部分组成:源时钟路径数据路径目标时钟路径源时钟路径源时钟路径是由源时钟从它的源点(典型的是输入端口)到发送时序单元的时钟引脚之间的路径。对于从输入端口起始的时序路径来说,就不存在源时钟路径数据路径对内部电路,数据路径是发送时序单元和捕捉时序单元之间的路径发送时序单元的有效时钟管脚称为路径起始点捕捉时序单元的数据输入管脚称为路径结束点对于输入端口路径,数据路径起始于输入端口。输入端口是路径的起始点对于输出端口路径,数据路径结朿语输岀端口。输岀端口是路径的结束点。目标时钟路径目标时钟路径是由目标时钟从其源点(典型的是输入端口)到捕捉时序单元的时钟管脚之间的路径。对于结束于输出端口的时序路径,就没有目标时钟路径图3-2显示了3段典型的时序路径REGAData PathREGBEndpointSource Clock PathStartpointDestination Clock PathFigure 3-2: Typical Timing PathSetup和Hold分析vⅳ ado ide分析时序并且在时序路径终点时候报告时序裕量。时序裕量是指在时序路径终点数据要求时间和抵达时间的差异。如果裕量为正,从时序的角度考虑此路径是有效的。Setup检查为了计算数据所需的 setup时间,时序引擎:1.决定源时钟和目的时钟之间的普通周期。如果没有被发现,为分析考虑多达1000个时钟周期。2.检查覆盖普通周期上的起始点和终点所有上升和下降沿。3.在任何两个有效 active沿之间的最小正差值dela。这个deta被称为 setup分析的时序路径要求Setup路径要求示例假象2个寄存器之间的一条路径,这些寄存器由其相应时钟上升沿触发。这条路径有效的时钟沿只有上升沿。时钟定义如下:.clko周期6nsck1周期4nsCommon periodclko launch edgesSetup(1)Setup(2)clk1 capture edgesOns 2ns 4nss 8n5 10ns 12nsFigure 3-3: Setup Path Requirement Example图33显示有2个单独的源和目的时钟沿有资格受到 setup分析: setup(1和 setup(2):源时钟发送沿时间:0ns+1*T(ck0)=6ns目的时钟抓取沿时间:0ns+2*(ck1)=8nsSetup Path Requirement=抓取沿时间-发送沿时间=2ns在计算路径要求时候,需要考虑2个重要的点:1.时钟沿是理想的,那就是说,时钟树插入延迟不在考虑之内2.默认时钟在0时间点是 phase-aligned,除非他们的波形定义引进了 phase-shit。异步时钟相位关系未知。时序引擎在分析其间路径时候会考虑默认值。关于异步时钟的更多内容看下部分Setup分析数据要求时间Setup分析数据要求时间是指为了让目的单元能安全的采样数据,数据必须在这个时间点之前稳定。这个值基于:目的时钟采样沿时间.目地时钟延时源时钟和目的时钟的不确定性目的单元 setup时间Setup分析的数据抵达时间Setup分析的数据抵达时间,是指由源时钟发送的数据在路径终点的稳定时候所需要的时间。它的值基于:源时钟发送沿时间源时钟延时数据路径延时数据路径延时包括所有从起点到终点的单元(cel)和线(ne延时。在时序报告中, Vivado将 setup时序考虑为数据路径的一部分。相应的,数据到达和要求时间的公式为:Data Required Time (setup)= destination clock capture edge time+destination clock path delayclock uncertaintyData Arrival Time(setup)= source clock launch edge timesource clock path delay+ datapath delaysetup timeSetup裕量是指要求时间和实际抵达时间的差值:Slack (setup)= Data Required Time -Data Arrival Time在输入数据引脚寄存器上 Setup裕量为负值,说明寄存器有可能锁存到未知的值跳转到错误状态Hod检查Hod裕量的计算与 setup裕量计算直接相关。当 setup分析证明了在最悲观的情况下数据可以被安全捕捉,hold分析确保了:同样的数据不可能被前面目地时钟沿错误的抓取下一个源时钟沿发送的数据不能被用来分析 setup的目的数据沿抓取因此,为了找到hold分析的时序路径,时序引擎考虑了所有为 setup分析的源和目的时钟沿结合的可能。对每一种可能的组合,时序引擎:检查发送沿和减去一个目的时钟周期的抓取沿之间的差值.检查了加上一个源时钟周期的发送沿和抓取沿之间的差值.只保留时间差值最大的发送沿和抓取沿hold路径要求示例采用page33中 setup路径要求示例中的时钟。对于 setup分析那仅有2个可能的时钟沿组合:Setup Path Requirement (S1)=1*T(clk1)-0*T(clk0)= 4nsSetup Path Requirement (S2)=2*T(clk1)-1*T(clk0)=2ns那么相应的hod要求如下:For setup s1:Hold path Requirement (Hla)-(1*T(clk1)-1*T(clk1))-0*T(clko)=onsHold Path Requirement (Hlb)=1*T(clkl)-(0*T(clk0)+I*T(clko))=-2nsFor setup $2:Hold Path Requirement (H2a)=(2*T(clk1)-1*T(clk1))-1*T(clko)2nsHold path Requirement(H2b)=2*T(clk1)-(1*T(clk0)+1*T(clk0))=-4ns从上面可以看出最大的要求时间是Ons,这正好与源时钟和目的时钟第一次上升沿相吻合。Hold路径要求示例,page36显示了 setup检查沿和他们相关的hold检查。cIko launch edgesHla S1 H1b/H2a522bclk1 capture edgesOns 2ns 4ns 6ns 8ns 10ns 12nsFigure 3-4: Hold Path Requirement Example此例中,最终的hod要求时间不是来源于最紧的 setup要求。这是因为所有可能的 setup沿都会被考虑在内,是为了找到最又挑战性的hod要求。正如在 setup分析中,数据要求时间和数据抵达时间是基于以下条件计算的:源时钟发送沿时间.目的时钟抓取沿时间源和目的时钟延时时钟不确定性数据延时.目的寄存器hod时间Data Required Time (hold)= destination clock capture edge timedestination clock path delayclock uncertaintyData Arrival Time (hold)= source clock launch edge timesource clock path delaydatapath delayhold timeHod裕量是要求时间和抵达时间的差值Slack (hold)= Data Arrival Time Data Required Time正的时序裕量意味着即使在最悲观的情况下数据也不会被错误的时钟沿抓取。而负的hold裕量说明抓取的数据错误,而且寄存器可能进入不稳定状态。矫正( recovery和移除( removal分析矫正和移除时序检查与 setup和hold检查相似,区别就是它们应用于异步数据管脚例如set或者clear o对于异步复位的寄存器.矫正时间是异步 reset信号为了锁定新数据已经切换到它的无效状态之后,到下一个有效时钟沿之间的最小时间。移除时间是在异步复位信号安全切换到其无效状态之前,到第一个有效时钟沿之后的最小时间。下面的等式描述了这两种分析的sack是如何计算的Recovery check下面的等式描述了下面如何计算:Data Required Time (recovery ) =destination clock edge start time+ destination clock path delayclock uncertaintyData Arrival Time (recovery )= source clock edge start timesource clock path delaydatapath delayrecovery timeSlack (recovery)= Data Required Time Data Arrival TimeRemoval checkData Required Time (removal)= destination clock edge start timedestination clock path delayclock uncertaintyData Arrival Time (removal)= source clock edge start timesource clock path delay+ datapath delayremoval timeSlack (removal)= Data Arrival Time -Data Required Time正如 setup和hold检査,一个负的 recovery裕量和 remova裕量说明寄存器可能进入亚稳态,并且将未知的电子层带入设计中。定义时钟时钟数字设计中,时钟提供了从寄存器到寄存器之间可靠的传输数据的时间参考。 Vivado ide时序引擎用时钟特征来:计算时钟路径要求以裕量计算的方式报告设计时序裕量更多信息,参考时序分析这章为了得到最精确的最大的时序路径覆盖,时钟必须合理的定义。可以用下面的特征定义时钟:源时钟是指定义在时钟驱动引脚或者时钟树跟端口的时钟时钟沿可以由周期和波形特性的组合描述周期是ns级的,与描述的波形的时间周期相匹配.时钟波形是在时钟周期里,在数ns内时钟上升沿和下降沿绝对时间的列表列表必须包含偶数个值。第一个值一般与第一个上升沿吻合,除非另外指定,默认的时钟占空比是50%相位是ns。如图4-1所示,ck0周期10ns,占空比50%,相位0ns。Ck1周期8ns,占空比75%,相位2ns。CIkO: period 10, waveform =10 5]CIk1: period =8, waveform=2850%50%ClaOns5ns10ns15ns25%75%clkbOns 2ns8ns 10ns16nsFigure 4-1: Clock Waveforms Example传播【 propagated clock)时钟周期和波形特征体现了时钟的理想特征。当时钟进入FPGA器件并且经过时钟树传播时候,时钟沿会有延时而且会随着噪声和硬件特性而改变。这些特点被称为时钟网络延时( latency)和时钟不确定{ uncertainty)时钟不确定性包含下面内容:clock jitterphase error任何额外指定的不确定Vivado会默认的将时钟作为传播时钟,这意味着,这是非理想的时钟。这么做是为了提供包含时钟树插入延时和不确定性的裕量的值。特定硬件资源
    2021-05-06下载
    积分:1
  • 肤色检测matlab代码
    这是用来检测肤色的matlab代码,已调试,下载后可直接用,希望对大家有帮助。
    2020-12-04下载
    积分:1
  • 基于模糊神经网络的目标自动识别 python
    ATR-FNN基于模糊神经网络的目标自动识别,在这个实现中,我们已经对2种神经网络进行了多类分类任务的比较研究。使用的数据集 - MSTAR SAR DATA
    2020-12-11下载
    积分:1
  • 澳大利亚电力负荷与价格预测数据
    澳大利亚电力负荷与价格预测数据,可用于电价预测和负荷预测,时间间隔为半小时,包括从2006年1月1日到2011年1月1日的数据
    2020-12-11下载
    积分:1
  • 绝对符合GB国标的CREO配置文件
    绝对符合GB国标的CREO配置文件
    2020-11-27下载
    积分:1
  • 基于匹配追踪算法的时频滤波去噪方法
    【实例简介】地震资料信噪比是影响地震资料质量的关键因素之一!目前的去噪方法大多难以保证在去噪的同时不损 伤有效波#为此!提出了基于匹配追踪算法的时频滤波方法!该方法采用+减去,去噪方式!可以有效地去除噪 声!且不损伤有效波#匹配追踪算法的基本原理是!将任意信号分解为波形的线性延展!而这些波形是从函数的 冗余代码中选出!可以最佳匹配信号的结构#用选出的波形中代表有效信号的部分对信号进行重构!可以达到 无损去噪的目的#分别利用匹配追踪时频滤波法和4We滤波法对含有随机噪声的仿真信号进行了去噪处理!结 果表明!匹配追踪时频滤波法可以较好地去除仿真信号中的随机噪声!降低对高频信号的损伤#
    2021-11-03 00:33:06下载
    积分:1
  • IOS 阅读器 开发实例源码下载
    ios阅读器
    2013-09-09下载
    积分:1
  • 在simulink中应用s函数的个简单实例
    在simulink中应用s函数设计一个连续系统的实例。程序做了详细的注释(拜托,简单的一眼看懂的那种没有注释)。作为入门级的看看比较好。友情提醒:运行前,记得设初值。
    2020-12-05下载
    积分:1
  • 696524资源总数
  • 103938会员总数
  • 55今日下载