登录
首页 » Others » ICP点云配准算法

ICP点云配准算法

于 2020-11-28 发布
0 263
下载积分: 1 下载次数: 1

代码说明:

ICP点云配准算法,基于Python实现ICP点云配准算法,基于Python实现

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 信号处理滤波器设计-基于MATLAB和Mathematica
    信号处理滤波器设计-基于MATLAB和Mathematica
    2020-12-02下载
    积分:1
  • 用51单片机C语言实现电磁炉功能
    【实例简介】用51单片机C语言实现电磁炉功能
    2021-11-11 00:35:37下载
    积分:1
  • 【免费】浙江大学计算方法课件
    浙江大学计算方法全套课件,内容包括线性代数方程组 非线性方程求根 数值积分 数值微分 微分方程 特征值与特征向量 等
    2020-11-02下载
    积分:1
  • matlab时频分析工具箱+安装方法+函数说明+最新版tftb.
    matlab时频分析工具箱+安装方法+函数说明+最新版tftb: 为了兼顾无积分的朋友,如果无法下载请加公众号:mushiwords ,回复:matlab直接获取永久下载链接
    2020-06-18下载
    积分:1
  • 基于MC9S12XS128的温湿度传感器DHT11序 验证过 可用
    基于MC9S12XS128的温湿度传感器DHT11程序 验证过 可用
    2020-11-02下载
    积分:1
  • sklearn0.19中文文档
    sklearn0.19中文文档 PDF格式高清。.1. 广义线性模型1.1.1. 普通最小二乘法1.1.1.1. 普通最小二乘法复杂度1.1.2. 岭回归1.1.2.1. 岭回归的复杂度1.1.2.2. 设置正则化参数:广义交叉验证1.1.3. Lasso1.1.3.1. 设置正则化参数1.1.3.1.1. 使用交叉验证1.1.3.1.2. 基于信息标准的模型选择1.1.3.1.3. 与 SVM 的正则化参数的比较1.1.4. 多任务 Lasso1.1.5. 弹性网络1.1.6. 多任务弹性网络1.1.7. 最小角回归1.1.8. LARS Lasso1.1.1.监督学习1.1.广义线性模型o1.1.1.普通最小二乘法1.1.1.1.普通最小二乘法复杂度o1.1.2.岭回归1.1.2.1.岭回归的复杂度1.1.22.设置正则化参数:广义交叉验证o 113. Lasso■1.1.3.1.设置正则化参数1.1.3.1.1.使用交叉验证■1.1.3.1.2.基于信息标准的模型选择1.1.3.1.3.与SVM的正则化参数的比较o1.1.4.多任务 Lassoo1.1.5.弹性网络o1.1.6.多任务弹性网络o1.1.7.最小角回归o.8. LARS Lasso■1.1.8.1.数学表达式o1.1.9.正交匹配追踪法(OMP)o1.1.10.贝叶斯回归1.1.10.1.贝叶斯岭回归1.1.10.2.主动相关决策理论-ARD1.1.11. logistic回归o1.1.12.随机梯度下降,SGDo1.1.13. Perceptron(感知器)o1.1.14. Passive Aggressive Algorithms(被动攻击算法)o1.1.15.稳健回归( Robustness regression):处理离群点( outliers)和模型错误1.1.15.1.各种使用场景与相关概念■1.1.15.2. RANSAC:随机抽样一致性算法( RANdomSAmple Consensus1.1.15.2.1.算法细节1.1.15.3.Thel-sen预估器:广义中值估计1.1.153.1.算法理论细节1.1.154. Huber回归1.1.155.注意1.1.16.多项式回归:用基函数展开线性模型1.2.线性和二次判别分析o1.2.1.使用线性判别分析来降维o12.2.LDA和QDA分类器的数学公式o123.LDA的降维数学公式o1.2.4. Shrinkage(收缩)o12.5.预估算法1.3.内核岭回归1.4.支持向量机o1.4.1.分类■1.4.1.1.多元分类■1.4.1.2.得分和概率1.4.1.3.非均衡问题1.4.2.回归o143.密度估计,异常( novelty)检测o1.4.4.复杂度o1.4.5.使用诀窍o1.4.6.核函数1.4.6.1.自定义核14.6.1.1.使用 python函数作为内核1.4.6.1.2.使用Gram矩阵14.6.1.3.RBF内核参数o1.4.7.数学公式1.4.7.1.sVC■1.4.7.2. NuSVo1.4.7.3.sVRo14.8.实现细节1.5.随机梯度下降o1.5.1.分类o1.5.2.回归1.5.3.稀疏数据的随机悌度下降o1.5.4.复杂度o1.5.5.实用小贴士o1.5.6.数学描述■1.5.6.1.SGDo1.5.7.实现细节1.6.最近邻o1.6.1.无监督最近邻■1.6.1.1.找到最近邻1.6.1.2. KDTree和 BallTree类1.62.最近邻分类o16.3.最近邻回归o1.6.4.最近邻算法1.64.1.暴力计算■1.6.4.2.K-D树1.64.3.Ba|树■1.6.4.4.最近邻算法的选择1.6.4.5.1 eaf size的影响o165.最近质心分类1.6.5.1.最近缩小质心1.7.高斯过程o1.7.1.高斯过程回归(GPR)o1.7.2.GPR示例1.7.2.1.具有噪声级的GPR估计1.722.GPR和内核岭回归( Kernel Ridge Regression)的比较1.7.2.3. Mauna loa co2数据中的GRRo1.7.3.高斯过程分类(GPC)o1.7.4.GPC示例1.7.4.1.GPC概率预测■1.74.2.GPC在XOR数据集上的举例说明■1.7.4.3.iris数据集上的高斯过程分类(GPC)o1.7.5.高斯过程内核1.7.5.1.高斯过程内核AP■1.7.5.2.基础内核■1.7.5.3.内核操作1.7.5.4.径向基函数内核1.7.5.5. Matern内核1.7.5.6.有理二次内核1.7.5.7.正弦平方内核1.7.58.点乘内核■1.7.5.9.参考文献o1.7.6.传统高斯过程1.7.6.1.回归实例介绍1.7.62.噪声数据拟合17.6.3.数学形式1.7.6.3.1.初始假设■1.7.6.32.最佳线性无偏预测(BLUP)1.7.6.3.3.经验最佳线性无偏估计( EBLUP)1.7.6.4.关联模型1.7.6.5.回归模型1.7.6.6.实现细节1.8.交叉分解1.9.朴素贝叶斯o1.9.1.高斯朴素贝叶斯o1.92.多项分布朴素贝叶斯1.9.3.伯努利朴素贝叶斯1.9.4.堆外朴素贝叶斯模型拟合1.10.决策树o1.10.1.分类o1.10.2.回归o1.10.3.多值输出问题o1.10.4.复杂度分析o1.10.5.实际使用技巧1.10.6.决策树算法:ID3,C4.5,c5.0和CARTo1.10.7.数学表达1.10.7.1.分类标准■1.10.7.2.回归标准1.11.集成方法o1.111. Bagging meta-estimator( Bagging元估计器)o1.11.2.由随机树组成的森林1.11.2.1.随机森林1.11.2.2.极限随机树1.11.2.3.参数1.11.24.并行化1.11.2.5.特征重要性评估1.11.2.6.完全随机树嵌入o 1.113. AdaBoost1.11.3.1.使用方法o1.114. Gradient Tree Boosting(梯度树提升)1.11.4.1.分类1.11.42.回归1.114.3.训练额外的弱学习器1.11.4.4.控制树的大小■1.11.4.5. Mathematical formulation(数学公式)■1.11.4.5.1. LoSS Functions(损失函数)1.114.6. Regularization(正则化)■1.14.6.1.收缩率( Shrinkage)■1.1.4.6.2.子采样( Subsampling)■1.11.4.7. Interpretation(解释性)1.114.7.1. Feature importance(特征重要性)1.114.7.2. Partial dependence(部分依赖)o1.11.5. Voting Classifier(投票分类器)1.115.1.多数类标等(又称为多数/硬投票)1.11.5.1.1.用法■1.11.52.加权平均概率(软投票)1.11.5.3.投票分类器( Voting Classifier)在网格搜索( Grid search)应用1.11.5.3.1.用法1.12.多类和多标签算法o1.12.1.多标签分类格式o1.12.2.1对其余1.122.1.多类学习1.122.2.多标签学习o1.12.3.1对11.12.3.1.多类别学习o1.12.4.误差校正输出代码1.12.4.1.多类别学习o1.12.5.多输出回归o1.12.6.多输出分类o1.12.7.链式分类器·1.13.特征选择1.13.1.移除低方差特征o1.13.2.单变量特征选择o1.13.3.递归式特征消除o1.13.4.使用 Select From Mode选取特征■1.13.4.1.基于L1的特征选取1.13.4.2.基于Tree(树)的特征选取1.13.5.特征选取作为 pipeline(管道)的一部分1.14.半监督学习o1.14.1.标签传播1.15.等式回归1.16.概率校准1.17.神经网络模型(有监督)o1.17.1.多层感知器o1.17.2.分类o1.17.3.回归o1.17.4.正则化o1.17.5.算法o1.17.6.复杂性o1.17.7.数学公式o1.178.实用技巧o1.17.9.使用 warm start的更多控制
    2021-05-06下载
    积分:1
  • NPOI教pdf
    【实例简介】NPOI(开源的.NET读写Excel、WORD等文档的类库)的使用教程,从作者博客的网友整理出来的,为方便所有NPOI的使用者特制作成PDF文档。
    2021-11-14 00:33:39下载
    积分:1
  • PML吸收边界三维FDTD算法MATLAB代码
    PML吸收边界三维FDTD算法MATLAB代码
    2020-06-02下载
    积分:1
  • 数据结构课设计实验报告(详细)
    数据结构课程设计实验报告(详细)数据结构课程设计实验报告(详细)数据结构课程设计实验报告(详细)
    2020-11-27下载
    积分:1
  • Key Technologies for 5G Wireless Systems
    5G无线通信系统关键技术(剑桥大学出版社) 2017年出版 对于5G所有最新技术进行了详细说明 很全的工具书Key Technologies for5G Wireless SystemsVINCENT W. S, WONGUniversity of British ColumbiaROBERT SCHOBERUniversity of Erlangen-NurembergDERRICK WING KWAN NGUniversity of New South WalesLI-CHUN WANGNational Chiao-Tung University即CAMBRIDGEUNIVERSITY PRESSCAMBRIDGEUNIVERSITY PRESSUniversity Printing House. Cambridge CB2 SBS. United KindomOne Liberty Plaza, 20h Floor New York, NY I(H0X, USA477 williamstown Road, port Melbourne, yic 3207 australia48424, 2nd Floor, Ansar Rod, Daryaganj. Delhi- I l4XH2, India79 Anson Road, #o6-(/ 00, Singapore 079%MCambridge University Press is part of the Lniversity of CambridgeIt furthers the University s mission by disseminating knowledge in the pursuit ofeducation, leaming and research at the highest international levels of excellence.www.cermbrid吧eInformtiononthistitlewww.cambridgeorg/978110713241810,1017③781316771655C Cambridge University Press 2017This puhlication is in copyright. Subjcct to sututonry exceptionand to the provisions of relewant collective licensing agreementsno reproduction of any part may take place without the writtenpermission of Cutmbridgre University Press.First published 2(117Printed in the United Kingdom by TJ International Ltd. Padstow, CornwallA catalogue recor for this pudlieafiove is aailable fromm the British LibraryLibrary of Congress Cataloging- in Pi hlicaiomz dataNames: Wong, Vincent W.S., editorTitle: Key technologies for 5G wireless systems/edited by Vincent W.S. Wong [and 3 otherOther titles key technologies for five g wireless svstemsDescription: Carmbrisige: New York, NY: Cambridge Lniversity Press, 2017.Identifiers: l CCN 2016045220)1 ISBN 9781 172418 (hardback)Subjects: LCSH: Wireless communication systems, I Machine-to-machinecommunications. Internet of things.Classitication: LCC TKs1032K49 2(17 DDC 621.38450-dc23LcrecordavailaBleathttps://lccnioc-gov/2016m5220)ISBN 978-1-107-17241- HardbackCambridge University Press has no responsibility for the persistence or accuracy ofURLs for extermal or third-party Internet websites referred to in this puhlication,and does not guarantee that any content on such websites is, or will remainaccurate of appropriateContentsList of Contributorspage xvIPrefaceKXIOverview of New Technolog ies for 5G SystemsVincent W S, Wong, Robert Schober, Derrick Wing Kwan Ng, and Li-Chun Wang1.1 Introduction1.2 Cloud Radio Access Networks1.3 Cloud Computing and Fog Computing1. 4 Non-orthogonal Multiple Access1. 5 Flexible Physical Layer Design334.4671. 6 Massive MIMo1. 7 Full-Duplex Communications1. 8 Millimeter wave1.9 Mobile Data Offloading, LTE-Unlicensed, and Smart Data Pricing131. 10 IoT M2M. and D2D1. I1 Radio Resource Management, Interference Mitigation, and Caching61. 12 Energy Harvesting Communications1. 13 Visible Light Communication19Acknowledgments20ReferencesPart I Communication Network Architectures for 5G Systems25Cloud Radio Access Networks for 5G Systems27Chih-Lin I, Jinn Huang, Xueyan Husang, Rongwved Ren, and Yami. Chen2.1 Rethinking the Fundamentals for 5G Systems272 User- Centric Networks2923 C-RAN Basics292.3.1 C-RAN Challenges Toward SGI302.4 Next Generation Fronthaul Interface (NGFI: The FH Solutionfor SGC-RAN312. 4.1 Proof-of-Concept Development of NGFI33Contents2.5 Proof-of-Concept Verification of Virtualized C-RAN2.5.1 Data packets3725.2 Test Procedure382.5.3 Test Results392. 6 Rethinking the Protocol Stack for C-RAN2.6.1 Motivation402.6.2 Multilevel Centralized and Distributed Protocol Stack402.7 Conclusion45AcknowledgmentsReferencesFronthaul-Aware Design for Cloud Radio Access Networks48Liang Liu, Wei Yu, and Osvaldo Simeone3. 1 Introduction483.2 Fronthaul-Aware Cooperative Transmission and Reception493. 2.1 Uplink513.2.2 Downlink573.3 Fronthaul-Aware Data Link and Physical layers61.3. I Uplink633.3.2 Downlink693.4 Conclusion73Acknowledgments74References74MobEdge computing76Ben Liang4.1 Introduction764.2 Mobile Edge Computing774.3 Reference architecture794.4 Benefits and Application Scenarios804 4.1 User-Oriented Use cases4. 4.2 Operator-Oriented Use Ca814 5 Research challenges824.5.1 Computation Offloading824.5.2 Communication Access to Computational Resources834.5.3 Multi-resource Schedulin844.5 4 Mobility Management854.5.5 Resource Allocation and Pricing4.5.6 Network functions virtualization864.5, 7 Security and Pri864.5.8 Integration with Emerging Technologies874.6 Conclusion88ReferencesContentsDecentralized Radio Resource Management for Dense HeterogeneousWireless networksAbolfazl Mehhodniya and Fumiyuki Adach5.1 Introduction925.2 System Model935.2.1 SINR Expression5.2.2 Load and Cost Function Expressions955.3 Joint BSCSA/UECSA ON/OFF Switching Scheme965.3.1 StrateTy Selection and Beacon Transmission53.2 UE AssocIation5.3.3 Proposed Channel Segregation Algorithms985.3.4 Mixed-Strategy Update3.4 Computer Simulation5.5 Conclusion104Acknowledgments04References105Part ll Physical Layer Communication Techniques107Non-Orthogonal Multiple Access(NOMA)for 5G Systems109Wei Llang, Zhiguo Ding, and H. Vincent Poor6.1 Introduction1106.2 NOMA in Single-Input Single-Output(SISO)Systems1126.2.1 The basics of nomaI126. 2. 2 Impact of User Pairing on NOMA136.2,3 Cognitive Radio Inspired NOMA6. 3 NOMA in MIMO Systems1206.3.1 System Model for MIMO-NOMA Schemes1216.3.2 Design of Precoding and Detection Matrices with Limited CSIT 1236.3.3 Design of Precoding and Detection Matrices with Perfect CSIT 1266.4 Summary and Future Directions128ReferencesFlexible Physical Layer Design133Maximilian Matthe, Martin Danneberg, Dan Zhang, and Gerhard Fettweis7.1 Introduction1337. 2 Generalized Frequency Division Multiplexing357.3 Software-Defined waveform1377. 3. 1 Time Domain Processing1387.3.2 Implementation Architecture1387.4 GFDM Receiver Design14174 Synchronization unit1427. 4.2 Channel Estimation Unit1474.3 MIMo-GFDM Detection Unit145Contents7.5 Summary and Outlook147Acknowledgments148References488Distributed Massive MIMO in Cellular Networks15IMichail Matthaiou and Shi Jin8. I Introduction15l8. 2 Massive MIMO: Basic Principles1528.2.1 Uplink Downlink Channel Models1538.2.2Favorable Propagation1548.3 Performance of Linear Receivers in a Massive MIMO Uplink1548.4 performance of linear precoders in a massive mimo downlink1578. s Channel estimation in massive mimo systems1588.5.1 Uplink Transmission1598.5.2 Downlink Transmission1608.6 Applications of Massive MIMO Technology1618.6.1 Full-Duplex Relaying with Massive Antenna Arrays1618.6.2 Joint Wireless Information Transfer and Energy Transfer forDistributed massive mimo1638.7 Open Future Research Directions1678. 8 Conclusionl68References169Full-Duplex Protocol Design for 5G Networks172Tanelf Ahonen and Risto wichman9.1 Introduction1729. 2 Basics of Full-Duplex Systems1739.2.1 In-Band Full-Duplex Operation Mode1739.2.2 Self-Interference and Co-channel Interference1749.2.3 Full-Duplex Transceivers in Communication Links1759. 2. 4 Other Applications of Full-Duplex Transceivers1789.3 Design of Full-Duplex Protocols1799.3, 1 Challenges and Opportunities in Full-Duplex Operation1799.3.2 Full-Duplex Communication Scenarios in 5G NetworksR9.4 Analysis of Full-Duplex Protocols1829.4.1 Operation Modes in Wideband Fading Channels1829. 4, 2 Full- Duplex Versus Half-Duplex in Wideband Transmission1849.5 Conclusion1849.5.1 Prospective Scientific Research DirectionsI849.5.2 Full-Duplex in Commercial 5G Networks185RLItrtncekl8610Millimeter Wave Communications for 5G Networks188Jiho Song, Miguel R Castellanos, and David J. LoweContentsⅸx10.1 Motivations and Opportunities18810.2 Millimeter Wave Radio Propagation18910. 2.1 Radio Attenuation1890. 2. 2. Free-Space Path LOSs19I10.2.3 Severe shadow19310.2 4 Millimeter Wave Channel model19310.2.5 Link Budget Analysis19410.3 Beamforming Architectures19510.3, Analog beamforming solutions19610.3.2 Hybrid Beamforming Solutions20010.3.3 Low-Resolution Receiver Architecture2010.4 Channel Acquisition Techniques20110.4.1 Subspace Sampling for Beam Alignment20210.4.2 Compressed Channel estimation Techniques20510.5 Deployment Challenges and Applications20710.5.1 EM Exposure at Millimeter Wave Frequencies20710.5.2 Heterogeneous and Small-Cell Networks208Acknowledgments209References209Interference Mitigation Techniques for Wireless Networks214Koralia N Pappi and George K, Karag annidis1 1.1 Introduction21411.2 The Interference Management Challenge in the 5G vision21411. 2. 1 The 5G Primary Goals and Their Impact on Interference2141 1.2.2 Enabling Technologies for Improving Network Efficiencyand Mitigating Interference21611.3 Improving the Cell-Edge User Experience: Coordinated Multipoint218I 1.3.1 Deployment Scenarios and Network Architecture2181 13. 2 CoMP Techniques for the Uplink22011.3.3 CoMP Techniques for the Downlink2211 1.4 Interference Alignment: Exploiting Signal Space Dimensions2231 1.4.1 The Concept of Linear Interference Alignment224L1. 4.2 The Example of the X-Channel225I 1. 4.3 The K-User Interference Channel and Cellular NetworksAsymptotic Interference Alignment22611.4.4 Cooperative Interferenee Networks22711.4.5 Insight from IA into the Capacity Limits of Wireless Networks 22711.5 Compute-and-Forward Protocol: Cooperation at the ReceiverSide for the Uplink22811.5.1 Encoding and Decoding of the CoF Protocol22811.5.2 Achievable-Rate Region and Integer Equation Selection23011.5.3 Advantages and Challenges of the CoF Protocol232IL6 Conclusion233References233
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载