登录
首页 » Others » 自适应滤波器设计及Matlab实现

自适应滤波器设计及Matlab实现

于 2020-11-28 发布
0 887
下载积分: 1 下载次数: 40

代码说明:

简单描述自适应滤波的原理及在MATLAB中实现的方法,并辅以相关MATLAB代码供大家交流。1绪论11引言人类传递信息的主要媒介是语言和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉总的加起来不过占20%,所以图像信息是十分重要的信息。然而,在图像的获取和图像信号的传输过程中,图像信号中不可避免的混入各种各样的随机噪声,造成图像失真(图像退化)。造成人类所获取的信息和实际是有偏差的,成为人类从外界获取准确信息的障碍。因此,对图像信号中的随杋噪声的抑制处理是图像处理中非常重要的一项工作在图像的获取和传输过程中所混入的噪声,主要来源于通信系统中的各种各样的噪声,根据通信原理及统计方面的知识,可以知道在通信系统中所遇到的信号和噪声,大多数均可视为平稳的随机过稈。又有“高斯过程又称正态随机过程,它是一种普遍存在和重要的随机过程,在通信信道中的噪声,通常是一种高斯过程,故又称高斯噪声。囚此,在大多薮的情况下,我们可以把造成图像失真的噪声可视为广义平稳高斯过程本文针对图像信号中混入的随机噪声,在怎样把现有的滤波算法应用到实际的图像复原中去的问题上提出了解决方法,并且应用 Matlab软件编程对图像进行处理。1.2研究目标及现状121图像复原技术的目标为了从含有噪声的数据中提取我们所感兴趣的、接近规定质量的图像,我们需要设计个系统满足:当信号与噪声同时输入吋,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制,即最佳滤波器。122图像复原抆术的研究现状日前的图像复原技术,即去噪的滤波技术可以分为两大类:传统滤波和现代滤波。传统滤波技术是建立在已知有用信号和干扰噪声的统计特性(自相关函数或功率谱)基础上的噪声去除;现代滤波技术则是不需要知道图像的先验知识,只是根据观测数据,即可对噪声进行有效滤除。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),以线性最小均方误差(MSE)估计准则所设计的最佳滤波器,称为维纳滤波器。这种滤汲器能最大程度的滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不再是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。卡尔曼滤波器既可以对平稳的和平稳的随机信号作线性最佳滤波,也可以作为非线性滤波[2]。然而只有在对信号和噪声的统计特性已知的情况下,这两种滤波器才能获得最优解。在实际的应用中,往往无法得到这些统计特性的完验知识,或者统计特性是随时间变化的,因此,这两种滤波器就实现不了真正的最佳滤波。Widrow B.和Hof于1967年提出的自适应滤波理论,可使在设计自适应滤波器时不需要事先知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。自适应滤波器自动调节参数可以通过各和不同的递推算法来实现,由于它采用的是逼近的算法,使得实际估计值和理论值之间必然存在差距,也就造成了自适应滤波问题没有唯一的解。依照各种递推算法的特点,我们把它应用于不同的场合。现在广为应用的自适应滤波方法主要是基于以下几种基本理论,再融合递推算法导出来的:(1)基于维纳滤波理论的方法维纳滤波是在最小均方误差准则下通过求解维纳霍夫方程来解决线性最优滤波问题的。基于维纳滤波原理,我们利用相关的瞬时值通过在工作过程中的逐步调整参数逼近信号的统计特性,实现最优滤波。由此,我们得到一种最常用的算法—最小均方算法,简称LMS算法。(2)基于卡尔曼滤波理论的方法卡尔曼滤波是线性无偏最小方差滤波递推滤波,它能使滤波器工作在平稳的或非平稳的环境,得到最优解。利用卡尔曼滤波理论的递推求解法导出自适应滤波器更新权矢量得不同递推算法。比LMS算法有极快的收敛速率,可是计算复杂度也增大∫,它需要计算卡尔曼矩阵。(3)基于最小二乘准则的方法维纳滤波和卡尔曼滤波推导的算法是基于统计概念的,而最小二乘佔计算法是以最小误差平方和为优化目标的。根据滤波器的实现结构,有以下3种不同的最小二乘自适应滤波算法:自适应递归最小二乘法(RLS),自适应最小二乘格型算法,QR分解最小二乘算法。(4)基于神经网络理论的方法神经网络是有大量的神经元相互连接而成的网络系统,实质上它是一个高度非线性的动力学网络系统,这个系统具有很强的自适应、自学习、自组织能力,以及巨量并行性、容错性和坚韧性,因而,它可以做很多传统的信号和信息处理技术所不能做的事情。因其超强的自动调节能力,使符它在自适应信号处理方面有着广阔的前景[2]在一系列的自适应算法中,虽然基于后面3种基本理论的方法在收敛速率和稳定、坚韧性方面有着更好的性能,但是,基于维纳滤波理论的IMS算法因其算法简单,而且能达到满意的性能,得到了青睐,成为了应用最广泛的自适应算法。为此,本文主要研究LMS自适应滤波器在图像去噪方面的应用。2理论基础21基本自适应滤波器的模块结构自适应滤波器通常由两部分构成,其一是滤波子系统,根据它所要处理的功能而往往有同的结构形式。另一是自适应算法部分,用来调整滤波子系统结构的参数,或滤波系数。在自适应调整滤波系数的过程中,有不同的准则和算法算法是指调整自适应滤波系数的步骤,以达到在所描述的准则下的误差最小化。自适应滤波器含有两个过程,即自适应过程和滤波过程。前一过程的基本目标是词节滤波系数"(),使得有意义的目标函数或代价函数()最小化,滤波器输出信号y()逐步逼近所期望的参考信号4k),由两者之间的误差信号(k)驱动某种算法对滤波系数进行调整,使得滤波器处于最佳工作状态以实现滤波过程。所以自适应过程是一个闭合的反馈环,算法决定了这个闭合环路的自适应过程所需要的时间。但是,由于目标函数)是输入信号(k),参考信号(k)及输出信号y(k)的函数,即20=ack,.y,因此目标函数必须具有以下两个性质(1)非负性g (=8[x(k), d(k), y(k] 20Vx(), u(k), y(k)(2.1)(2)最佳性E()=E[x(k),d(k),y(k)]=0(22在自适应过程中,自适应算法逐步使目标函数(最小化,最终使()逼近于(),滤波参数或权系数()收敛于",这里"是自适应滤波系数的最优解即维纳解。因此,自适应过程也是自适应滤波器的最佳线性估计的过程,既要估计滤波器能实现期望信号()的整个过程,又要估计滤波权系数以进行有利于主要目标方向的调整。这些估计过程是以连续的时变形式进行的,这就是自适应滤波器需要有的自适应收敛过程。如何缩短自适应收敛过程所需要的收敛时间,这个与算法和结构有关的问题时人们一直重视研究的问题之—[2]。当然滤波子系统在整个自适应滤波器的设计中也占有很重要的地位,因为它对最终的滤波性能有很大的影响。本文要研究的是基于维纳滤波原理的LMS算法,那么下面我们需要介绍一下基本维纳滤波原理。22基本维纳滤波原理基本维纳滤波就是用来解决从噪声中提取信号问题的一种过滤(或滤波)方法。它基于平稳随机过程模型,且假设退化模型为线性空间不变系统的。实际上这种线性滤波间题,可以看成是种估计问题或种线性佔计问题。基本的维纳滤波是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数万(3)或单位样本响应h(k)的形式给出的,因此更常称这种系统为最住线性过滤器或滤波器。设计维纳滤波器的过程就是寻求在最小均方误差下滤波器的单位样本响应h(k)或传递函数h(x)的表达式,其实质是解维纳-霍大( Wiener-Hopf方程。基木维纳滤波器是这样的,有两个信号x(k)和y(k)同时加在滤波器上。典型地y(k)包含一个与x(k)相关地分量和另一个与x(k)个相关地分量。维纳滤波器则产生y(k)中与x(k)相关分量地最优估计,再从y(k)中减去它就得到ε(k)。y(kak)输出rk)维纳德波n=∑v(D)x(k-)f=0图21基本维纳滤被模型假定一个N个系数(权值)的FR滤波器的结构,维纳滤波和原始信号y(k)之间的差信号c(k)为ek= yk-nk=ye∑w(i)x(23)其中和w分别为输入信号矢量和权矢量,由下式确定(24)k-N-1)H(N-1)误差平方为2Y, x,w+w x.x,w对(3)式两边取期望得到均方误差(MSE),若输入x(k)与输出yk)是联合平稳的,则ELel=Ely,-2ELYXiwItElwx, x, w2.62P其中E[代表期望,=Ex是(k)的方差,P=E[yx1是长度为N地互相关矢量,R=Exx是NxN的自相矩阵。一个MSE滤波系数的图形是碗形地,且只有唯一地底部,这个图称为性能曲面,它是非负的。性能曲面地梯度可由下式给出2P+2R(2.7)Ytrim图22误差性能曲面每组系数w(i)(i=1,2,N-1)对应曲面是一点,在由面是地最小点梯度为0滤波权矢量达到最优”呷R P(28)即著名的维纳霍夫方稈的解。自适应滤波地仟条是采用合适的算法来调节滤波权重W,0)W,1),…W,N-1),从而找到性能曲面地最优点维纳滤波的实际用途有限,因为:(1)它需要已知自相关矩阵R和可相关矢量P,这两个量通常是未知的。(2)它包含∫矩阵的求逆,非常的耗时3)若信号为非平稳的,则R和P是时变的,导致必需重复计算。对于实际的应用需要一种能够依次加入地抽样点而得到"的算法。自适应算法就就是用于达到这个目的,而且不需显式计算R和P或进行矩阵求逆[3]3自适应滤波原理及算法在实际应用中常常会遇到这样的情况:随机信号的统计特性是未知的,或者信号的统计特性是缓慢的变化着的(非≯稳信号),这就促使人们去研究一类特殊的滤波器,这类滤波器具有以下特点:当输入过程的统计特性未知时,或者输入过程的统计特性变化时,能够相应的调整自身的参数,以满足某种准则的要求,由于这类滤波器能变动自身的参数以“适应”输入过程统计特性的估计或变化,因此,就把这类滤波器称为自适应滤波器41。在本文中我们研究的是退化图像复原的问题,由于图像自身的多样性和所混入的噪声的随机性和多样性,我们选择自适应滤波取出图像中混入的噪声。3.1横向滤波结构的最陡下降算法3.11最陡下降算法的原理首先考虑如下图所示的横向FIR自适应滤波器x(k-1k-2)x、-M+2)xR-M+l)e自适应控制算法1图31自适应横向滤波器结构它的输入序列以向量的形式记为X(k)=[x(k)x(k-1)(k-M+1)(3.1假设x()取自一均值为零,自相关矩阵为R的广义平稳随机过程,而滤波器的系数矢量(加权矢量)为:k)=[w,(k)w2(k)(32)以上二式中括号内的k为时间指数,因此,X()和W()分别表示时刻k的滤波器输入序列和加权值,滤波器的输山y(k)为:y(k)=∑w(n)x(n-t+1)33)式中M为滤波器的长度。图31中的“k称为“期望理想响应信号”,有时也可称为“训练信号”,它决定了设计最佳滤波器加权向量W(k)的取值方向。在实际应用中,通常用一路参考信号来作为期望响应信号。(k)是滤波器输出y(k)相对于a(k)的误差,即e(k)=d(k)-v(h)(34)显然,自适应滤波控制机理是用误差序列(k按照某种准则和算法对其系数w)n),=1.2…,M进行调节的,最终使自适应滤波的目标(代价)函数最小化,达到最佳滤波状态。按照均方误差(MSE)准则所定义得目标函数是E(h)=Ele()(35)eId()-2d(k)y(k)+y(k)将式(3.4)代入式(3.5),目标函数可以化为c(k)=Ele(k)(3.6)E[d(k)]-2Eld(kw(k)x(k]+ elw(kX(eX(s)w(k)当滤波系数固定时,目标函数又可以写为c(k=[d(k]-2W(k)P+W(k)RW (k)(3.7)其中,P-趴是长度为N的期望信号与输入信号的互相关矢量,R=Exx是Nx的输入向量得自相关矩阵。由式(37)可见,自适应滤波器的目标函数()是延迟线抽头系数(加权或滤波系数)的二次函数。当矩阵R和矢量P已知时,可以由权矢量W(k)直接求其解。现在我们将式(3.7)对W求倒数,并令其等于零,同时假设R是非奇异的,由此可以得到目标函数最小的最佳滤波系数w为R P(38)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 小米商城html项目实战,js+css+html
    小米商城html项目实战,js+css+html
    2020-12-06下载
    积分:1
  • M.2接口M-KEY,AD封装库文件
    【实例简介】M.2接口M-KEY的底座和金手指的AD封装库,方便画图时直接拿来用。 M.2接口M-KEY的底座和金手指的AD封装库,方便画图时直接拿来用。
    2021-10-31 00:35:49下载
    积分:1
  • Matlab最小二乘法曲线拟合(源码+注释+运行截图)
    matlab最小二乘法进行曲线拟合(源码+注释)特别详细介绍了多项式拟合(代码+运行截图)。
    2021-05-06下载
    积分:1
  • 状态反馈线性二次型最优控制器设计
    关于状态反馈线性二次型最优控制器设计的作业.
    2020-12-01下载
    积分:1
  • ADAS和自动驾驶的现状、架构、算 法和技术路线
    高级驾驶辅助系统 [1] 是利用安装在车上的各式各样传感器,在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。 近年来ADAS市场增长迅速,原来这类系统局限于高端市场,而现在正在进入中端市场,与此同时,许多低技术应用在入门级乘用车领域更加常见,经过改进的新型传感器技术也在为系统布署创造新的机会与策略。
    2021-05-06下载
    积分:1
  • 基于matlab的声音信号频谱分析和时域分析
    这里主要是对声音信号进行分析。因为Matlab在数字信号处理上的便捷,又有功能强大的工具箱辅助设计,所以我们可以利用Matlab完成声音信号频谱分析和时序分析的设计。本次设计内容包括:1) 信号的获取2) 时域分析:包括频率,振幅,相位,周期,均值,峰值等3) 频域分析:主要分析波形的幅值、相位与频率的关系
    2020-12-02下载
    积分:1
  • SAR雷达成像点目标仿真——RD算法和CS算法(序+注释)
    SAR雷达成像点目标仿真,包含RD算法和CS算法的原理+Matlab程序,程序每一行均有注释,适合入门以τ的时闫发射啁啾脉冲,然后切换天线开关接收回波信号。脉冲重复间隔为l发接收图雷达发射脉冲串的时序当雷达不处于发射状态时,它接收反射回波。发射和接收回波的时间序列如图所示在机载情况下,每个回波可以在脉冲发射间隔内直接接收到。但是在星载情况下,由于距离过大,某个脉冲的回波要经过个脉冲间隔才能接收到。这里仿真为了方便,默认为机载情況脉冲回波时间图脉冲雷达的发射与接攻周期假设为信号持续时间,下标表示距离向:为重复频率,为重复周期,等于。接收序列中,τ衣示发射第个脉冲时,目标回波相对于发射序列的延时。雷达的发射序列数学表达式为式式中,表示矩形信号,为距离向的信号调频率,为载频。雷达回波信号由发射信号波形,天线方向图,斜距,目标,环境等因素共同决定,若不考虑环境因素,则单点目标雷达回波信号可写成式所示:其中,G表示点目标的雷达散射截面,表示点目标天线方向图双向幅度加权,z表示载机发射第个脉冲时,电磁波再次回到载机时的延时r,带入式中得式就是单点目标叵波信号模型,其中,是分量,它决定距离向分辨率;为多普勒分量,它决定方位向分辨率对于任意一个脉冲,回波信号可表小为式所小我们知道,由于随慢时间的变化而变化,所以计算机记录到的回波数据存储形式如图所示:贴棘·●鲁通ib●幽●中@中●●●。●●鲁●●ed●●i●●一●●:b●t老!y·●●●●●Outuinh0ib●●●●·:·:·;D●●中·!达脉冲长度斜距(军样数或单元置)图目标照射时间内,单个点目标回波能量在信号处理器的二维存储器中的轨迹4距离徙动及校正根据图可知,在倾斜角为零或很小的时侯,目标与雷达的瞬时距离为,根据几何关系可知,,根据泰勒级数展开可得:由式可知,不同慢时间对应着不同的并且是一个双曲线形式或者近似为个二次肜式。如图所示,同一目标的回波存储在计算机里不在同一直线上,存在距离徙动从而定义距离徙动量:为了进行方位向的压缩,方位向的回波数据必须在同一条直线上,也就是说必须校止距离徙动Δ。由式()可知,不同的最近距离对应着不同的▲,因此在时域处理距离徙动会非常麻烦。因此,对方位向进行傅里叫变换,对距离向不进行变换,得到新的域。由于方位向的频率即为多普勒频率,所以这个新的域也称为距离多普勒域将斜距写成多普勒的函数,即。众所周知,对最近距离为的点目标回波多普勒是倾斜角b的函数,即=2,斜距,于是6:≈所以距离多普勒域中的我距离徙动为Δ,可发现它不随慢时间变换同一最短距离对应着相同大小的距离徙动。因此在距离多普勒域对一个距离徙动校正就是对一组具有相同最短距离的点目标的距离徙动校止,这样可以节省运算量。为了对距离徙动进行校正,需要得到距离徙动单元,即距离徙动体现在存储单元中的移动数值,距离徙动单元可以表示为△这个值通常为一个分数,由于存储单元都是离散的,所以不同通过在存储单元简单的移动得到准确的值。为了得到准确的徙动校正值,通常需要进行插值运算。本仿真釆用了两种插值方法最近邻点插值和插值,下面分别进行介绍。最近邻点插值法的优点是简单而快速,缺点是不够精确。Δ其中为整数部分为小数部分,整数部分徙动可以直接通过平移消除,对于小数部分则通过四舍五入的方法变为或者,这样就可以得到较为精确的插值插值原理如下:在基带信号下,卷积核是函数插值信号为即为所有输入样本的加权平均。可通过频域来理解,如图所示,采样信号频普等于以采样率重复的信号频谱。为了重建信号,只需要一个周期频谱(如基带周期),因此需要理想矩形低通滤波器在频域中提取基带频谱(如图)所示。凵知该理想滤波器在时域中是函数。由于频域相乘相当于时域卷积,故插值可以通过与核的卷积来实现信号频谱幅度理想低通滤波器-101频率图理憇低通滤波器怎样对采样信号进行插值5点目标成像 matlab仿真5.1距离多普勒算法距离多普勒算法(是在年至年为民用星载提出的,它兼顾了成熟、简单、髙效和精确等因素,至今仍是使用最广泛的成像算法。它通过距离和方位上的频域操作,到达了高效的模块化处理要求,同吋又具有了一·维操作的简便性。图示意了的处理流程。这里主要讨论小倾斜角及短孔径下的基本处理框当数据处在方位时域时,可通过快速卷积进行距离压缩。也就是说,距离后随即进行距离向匹配滤波,再利用距离完成距离压缩。回波信号为:距离向压缩后的信号为:通过方位将数据变换至距离多普勒域,多普勒中心频率估计以及大部分后续操作都在该域进行。方位向傅里叶变换后信号为:在距离多普勒域进行随距离时间及方位频率变化的,该域中同距离上的组日标轨迹相互重合。将距离徙动曲线拉直到与方位频率轴平行的方向。这里可以采用最近邻点插值法或者插值法,具体插值方法见前面。假设插值是精确的,信号变为:通过每一距离门上的频域匹配滤波实现方位压缩。为进行方位压缩,将后的乘以频域匹配滤波器最后通过方位将数据变换回时域,得到压缩后的复图像。复原后的图像为:正达原始教据距离压缩方位向傅里叶变换距离徙动校正方位压方位向傅里叶逆变及多视叠加压缩数据图距离多普勒算法流程图5.2 Chirp Sca l ing算法距离多普勒算法具有诸多优点,但是距离多普勒算法有两点不足:首先,当用较长的核函数提高距离徙动校正()精度时,运算量较大:其次,二次距离压缩()对方位频率的依赖性问题较雉解决,从而限制了其对某些大斜视角和长孔径的处理精度。算法避免」中的插值操作,通过对信号进行频率调制,实现了对该信号的尺度变换或平移图显示了算法处理流程。这里主要讨论小倾斜角及短孔径下的基本处理框图。主要步骤包括四次和三次相位相乘。通过方位向将数据变换到距离多普勒域。通过相位相乘实现操作,使所有目标的距离徙动轨迹·致化。这是第步相位相乘。用以改交线调频率尺度的二次相位函数为通过距离向将数据变到二维频域。通过与参考函数进行相位相乘,同吋完成距离压缩、和‘致这是第二步相位相乘。用于距离压缩,距离徙动校正的相位函薮写为:通过距离向将数据变回到距离多普勒域。通过与随距离变化的匹配滤波器进行相位相乘,实现方位压缩。此外,由于步骤中的操作,相位相乘中还需要附加一项相位校正。这是第三步相位相乘。补偿由引起的剩余相位函数是:最后通过方位向将数据变回到二维时域,即图像域雷达原始数据SAR信号域方位向傅里叶变换第一步相位相乘补余RCMC中的距离多Chirp sealing操作普勒域距离向傅里叶变换第一步相位相乘参考函数相乘用于距离压细、SRC和一致RCMC频域距离向傅里叶逆变美第三步(最后方位压缩及相位校王步)相位相乘距离多晋勒域方位向傅里叶道变换SAR图像域压缩数据图算法流程图简而言之,算法是将徙动曲线逐一校正,算法是以某一徙动曲线为参考,在域内消除不同距离门的徙动山线的差异,令这些曲线成为一组相互平行的曲线,然后在二维频率域內统一的去掉距离徒动。通俗一点就是,算法是将弯曲的信号一根根矫直,而算法是先把所有信号都掰得一样弯,然后再统一矫直。6仿真结果6.1使用最近邻点插值的距离多普勒算法仿真结果本文首先对个点目标的回波信号进行了仿真,个点目标构成了矩形的个顶点和中心,其坐标分别如下,格式为(方位向距离向后向反射系数):图的上图是距离向压缩后的图像,从图中可以看到条回波信号(其中有几条部分重合,但仍能看出米)目标回波信号存在明显的距离徙动,需要进行校正。图的下图是通过最近邻点插值法校正后的图像,可以看出图像基本被校正为直线。配萬向压缩,未交正距离徒动的图像距高可距离压缩,权E距高徒动日的图像L图距离向压缩后最近邻点插值的结果图为进行方位向压缩后形成的图像,可以明显看出个点日标,并且个点日标构成了矩形的四个顶点及其中心。方位向压缩后的图像图通过最近邻点插值生成的点目标图像6.2使用最近邻点插值的距离多普勒算法仿真结果图上图为通过距离压缩后的图像,图的下图为通过插值法校止后的图像。距离甸压缩,未校正距离徙动的图像距离向距离向压缩,校止离徙动后的图像距离向图距离向压缩后插值的结果图为进行方位向压缩后形成的图像,可以明显看出个点目标,并且个点目标构成了矩形的四个顶点及其中心。方位向缩后的图像图通过插值生成的点目标图像6.3 Chirp Scal ing算法仿真结果可样,在中,对个点目标的回波信号进行了仿真,个点目标构成了矩形的个顶点和中心,其坐标分别如下,格式为(方位向距离向后向反射系数):
    2020-12-05下载
    积分:1
  • adams—view_2013官方帮助文件
    adams—view_2013的官方帮助文件,适合新手学习
    2020-12-10下载
    积分:1
  • Android日历+记事本源码
    自己做的一个日历实现了一个记事本功能,希望对大家有用
    2020-12-02下载
    积分:1
  • 反卷积和信号复原 图像复原
    反卷积和信号复原是信号处理技术中具有理论挑战性的分支。本身内容大致分为三个部分:理论基础,一维信号反卷积和图像复原。
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载