登录
首页 » Others » 台达PLC modbus通信上位机64位C#实例

台达PLC modbus通信上位机64位C#实例

于 2020-11-29 发布
0 277
下载积分: 1 下载次数: 3

代码说明:

台达PLC modbus通信上位机64位C#实例程序,vs2010亲测可用。台达PLC modbus通信上位机64位C#实例程序,vs2010亲测可用。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 声源定位的算法
    声源定位的算法
    2020-06-25下载
    积分:1
  • matlab 爱的表白
    用matlab编写的表白代码,可自行更换文字、名字,欢迎使用~
    2020-12-03下载
    积分:1
  • 创建及调用基于QT5 QML的 DLL(举例QML中使用QZXing识别二维码)
    Qt Quick 技术的引入,使得你能够快速构建 UI ,具有动画、各种绚丽效果的 UI 都不在话下。在许多情况下基于QML开发的漂亮的界面想将他设计成组件提供给其他人使用,又不想让别人看到QML源码,另外如果其他人是基于vc环境又如何使用你的QML界面呢?本例子代码实现将基于QT.6 QML开发的模块编译成可以在VS环境中直接使用的DLL库文件,并举例使用QZXing识别二维码。
    2020-12-02下载
    积分:1
  • svm分类器的实现 (matlab)
    数据挖掘中svm分类器的实现,在matlab中编写
    2020-12-06下载
    积分:1
  • MATLAB用压缩感知恢复维信号
    MATLAB用压缩感知恢复一维信号例子,用高斯测量矩阵获得测量值,用OMP算法恢复原始一维信号。
    2020-06-19下载
    积分:1
  • 基于轨迹重规划的智能车辆避障模型预测控制
    为了提高无人驾驶车辆的轨迹跟随性精度和实时性,针对无人驾驶车辆规避障碍物的路径规划问题,本文提出了一种基于轨迹重规划的无人车避障模型预测控制算法。利用车载传感器获得障碍物和参考路径信息,通过轨迹重规划控制器规划出规避障碍物的期望路径, 并将重规划的期望路径信息输入到模型预测控制器,控制输出前轮转角,通过方向盘主动转向实现避障的同时,实现对参考路径的跟踪;最后,利用 CarSim 和 Simulink 建立轨迹重规划和轨迹跟踪的闭环控制系统仿真平台,并以双移线工况为例,进行了仿真验证。结果表明该方法能够在不同车速下实现对障碍物可靠规避的同时,实现对参考路径的稳定跟踪。
    2020-12-12下载
    积分:1
  • Matlab2017b上运行CFAR算法(数据+代码+教
    本资源中包含CFAR算法的源代码、测试数据以及使用教程。本资源是在Matlab2017b中调试可用,教程中包含MinGW编译器的下载地址和安装方法和mex文件混编的步骤,非常的全面,供大家下载学习!
    2020-06-25下载
    积分:1
  • 分别用宽度优先、深度优先、贪婪算法和A*算法求解“罗马利亚度假
    分别用宽度优先、深度优先、贪婪算法和 A*算法求解“ 罗马利亚度假问题 ”(即最短路径的搜索问题)。要求:分别用文件存储地图和启发函数表,用生成节点数比较几种算法在问题求解时的效率,列表给出结果。(中国地质大学赵曼老师教!!!)
    2021-05-07下载
    积分:1
  • 五线四相步进电机开发全套资料
    五线四相步进电机开发全套资料,解析了该种电机的工作原理,不同开发模式方法,以及不同平台下的源代码
    2020-12-11下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载