登录
首页 » Others » GM(1,n) matlab代码

GM(1,n) matlab代码

于 2020-11-30 发布
0 281
下载积分: 1 下载次数: 3

代码说明:

GM(1,n) matlab代码,灰色预测~

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 深度学习的matlab代码
    深度学习的简单matlab代码,经检验可以用。对手写数字小图像进行有标签学习,分类为10,单机运行5000张图片后,可进行0-9的手写数字识别。
    2020-12-11下载
    积分:1
  • Apriori算法的改进
    有关Apriori算法的几种改进方法,可以帮助我们更好地进行数据挖掘分析
    2020-12-05下载
    积分:1
  • 室内可见光通信光照分布MATLAB代码
    室内可见光通信光照分布MATLAB代码,5*5*3的房间光照度分布,值得学习
    2021-05-06下载
    积分:1
  • 信号的小波模极大值分析与突变点定位
    【实例简介】用小波多分辨分析的特性将突变信号进行多尺度分解, 然后通过分解后的信号来确定突变信号的突变 位置。Lipschitz 指数被用来定量描述函数的奇异性。当小波变换尺度越来越精细时, 小波变换模极大值信号突变点的衰 减速度取决于信号在突变点的Lipschit z 指数。小波变换不仅可以确定突变点发生的时间, 而且可以进一步判断突变的性 质
    2021-11-18 00:35:58下载
    积分:1
  • 基于matlab线性回归模型负荷预测
    基于matlab的多元线性回归,可以实现3元以内的线性回归,对电力系统负荷进行预测和校验
    2020-12-05下载
    积分:1
  • 雷达数据格式
    这是雷达数据的标准格式的一个实例的分析,有助于初入者对雷达信息的理解。
    2020-12-02下载
    积分:1
  • matlab 实现线性调频信号以及分析处理
    里面有关于实现matlab的算法以及分析处理山国科技记文在线分布的时频平面作直线积分投影的变换,统称对信号作变换在分布的时频平面里惯用轴的截距和斜率为参数表小直线。因此,当需要沿作直线积分时,可将积分路径(直线)的参数(u,a)替换成()日两对参数之间的关系为:m=-cot,w=! sina。若求信号的变换,并以参数表示积分路径,则有:D.a=PQ线w, (t, wB u-u du∫r(,n)ma(w-mn-m)nh∫m(,w[一(m+motcw lt, wo +mt dt/sinaWo=u/sina上式表明,若是参数为和的信号,则积分值最大;而当参数偏离与或时,积分值迅速减小,即对‘定的信号,其变换会在对应的参数处呈现尖峰。我们自然会想到:多分量的信号的特性在平面里更加突出。即表现为各个尖峰,因而更有利于区别交叉项和噪声。利用变换一定能够获得更好的性能。作为时频分析方法之一,分数阶傅里叶变换ˉ与分布()变换()分别有着一定的数学关系,借助它们的联系,可进一步说明分数阶傅里叶变换的物理意义。信号的分布函数的定义为t+=xtde作为能量型时频表示满足许多期望的数学性质,这里给出其边缘特性X tt wdvXw=wtwat对WD旋转C角度,即对分布实施变换,其结果是RWIW=∫f山国技记文在线而信号的阶分薮阶傅里叶变换X。t的就是将信号的旋转c角度,即对于分数阶傅里叶变换只有旋转不变性,所以有X u= wtP可以看出,对时间轴与频率轴的积分分别是信号在时刻的瞬时功率和信号在频率的谱密度,而信号的对与时间成c角度的轴的积分投影对应着角度为a的分数阶傅里叶变换的幅度平方,这进步从能量的角度说明分数阶傅里叶变换作为广义傅里叶变换的含义。正弦信号在时频平面是一条平行于时间轴的直线,即它的频率不随时间变化,可视为旋转角度为°的完全时间域表示;冲击朕数在时频平面是一条平行于频率轴的直线可视为旋转角度为°的完全频率域表示;信号在时频平面是一条斜率为调频率的直线,当该信号的某一角度的分数阶傅里叶变换与其调频率一致时,在无限长度的理想情况下,表现为幅度为无穷大的冲击,在信号长度有限的情况下,其分数阶傅里卟变换呈现极大值这就是信号在分数阶傅里叶变换域的特点。离散 Chirp fourier变换是最近提出的一种有效的线性调频信号检测技术,它 Fourier变换的一种推广形式,可同时匹配 chirp信号的中心频率和调频率。本文利用修正离散Chirp- Fourie交换( MDCFT)实现干扰信号的检测和参数估计,从而实现对干扰的自适应抑制。分析和仿真表明,该方法可对FM干扰有着极好的抑制效果;同时,由于 Chirp- Fourie变换是维的线性变换,可借助快速傅里叶变换(FFT〕实现,与基于WVD的算法相比,不仅避免了交叉项十扰,而且降低了计算的复杂度,其实现更为简使3.基于Mat1ab的上机仿真过程及结果分析3.1对单分量信号的仿真及结果分析():输入解析信号为x()=eb的分布:40,图单分量信号的分布山国科技论文在线在上述解析信号中加入噪声后,用分布分析其性能图加入噪声的单分量信号的分布由图可以看出实际结果与前面的理论推导致。在实际应用中,信号长度总是有限长的,此时分布呈背鳍状。由图可以得到变换对噪声不太敏感,时频变换后信噪比较高。但当干扰的幅度大到一定程度时,变换的结果会严重变差,甚至分析不出结果。():前两个图是输入解析信号为x(t)=em的变换,后两个图是在这个解析信号中加入噪声以后用变换对其进行的分析:400C501m01501020100150图单分量信号的变换由理论分析可知,当旋转角度与线性调频信号的斜率相這应时,变换将出现一个峰值。这个分析在图中得到了证实。():图前两个图是输入解析信号为x()=e的分数阶傅里叶变换,后两个图是在山国科技论文在线这个解析信号中加入噪声以后用分数阶傅甲叶变换对其进行的分析:分数阶傅甲叶变换变换与变换的紧密联系在图和图的仿真中也可以得到证实HOD50图单分量信号的分数阶傅里叶变换():图的前两个图是输入中心频率是,调频率是的单分量线性调频信号后的Chirp- Fourier变换,后两个图是在这个信号中加入噪声以后用 Chirp-Fourier变换对其进行的分析。通过这个仿真,还将证明一个重要性质: Chirp- Fourier变换可同时匹配线性调频信号的中心频率和调频率的82a图单分量信号的 Chirp fourier变换比较结论:从以上几个仿真图形可以看出,对单分量的信号而言,上述几个变换山国科技论文在线都有非常好的时频聚集性,特别是分布与理论结果完仝一致。在抗噪声方面,对比几个图可知,变换和 Chirp- Fourier变换要比分布和分数阶傅里叶变换吏好。而对于分数阶傅里叶变换和分布,分数阶傅里叶变换的抗噪声性能要好3.2对多分量信号的仿真及结果分析个多分量的线性调频信号的D15020心Dm图多分量信号的一个多分量的线性调频信号的变换50.540多分量信号的变换山国科技论文在线个多分量的线性调频信号的分数阶傅甲叶变换:图多分量信号的分数阶傅里叶变换个多分量的线性调频信号(含两个分量,中心频率和调频率分别为k=)的 Chirp- Fourier变换50299,Q图多分量信号的 Chirp-fourier变换比较结论:从以上四个图可以看出,对于多分量信号,分布由于存在交叉项,时频面模糊不清,而其他三种变换则可以检测到两个信号。从图中还可以看到,Chirp- Fourier变换的效果是最好的。而且我们从图中还可以清楚地看到线性调频信号的中心频率和调频率。4LFM信号的应用线性词频)信号广泛地应用于雷达、声纳和通信等信息系统中。在这类系统中,信号的检测与参数估计是个重要的研究课题,受到特别的关注。下面给出一个基于FRT的MTD雷达信号处理过程的防真实例。假设有一个运动目标,回波信号为Stjn∫t-jwt+nt,其中nt为杂波信号,信号参数为nt是均值为零,方差为的高斯白噪声,信噪比为,观测时间为,采样频率为采样点数为N采用分数阶域的扫描上算法对该冋波信号作计算机仿真,仿真结果如图所从图中可以清楚看到一个LFM信号的存在,而闬目标的峰值非常突出,受杂波的影响相对较小。因此采用FRT的MTD雷达的抗干扰能力较强。另外由于日标的特征非常明显,可以通过适当提高杂波门限的方法来减小虚警概率山国科技论文在线图基于ⅣRFT的MTD雷达信号处理过程的防真5结束语非平稳信号是现代信号处理的主要研究对象之一,对其有很多种理论分析方法。本文介绍的分布,变换,分数阶傅里叶变换,变换是其中比较常用和重要的几种。本文对这几种变换做了初步的介绍,进而对它们进行了一些比较这有助于进一步了解各种变换的性能和作信号分析时选择合适的变换。时频分布之所以受到很多研究人员和信号处理领域的工程人员的重视,是因为它有很多传统傅立叶变换所不具备的性质。由时频分析的定义可知时频表示能给出信号在时域和频域的信息。经过儿年的发展,时频分析理论趋于成熟,并遂渐在实际应用中崭露头角,近年来已在实际的非平稳信号处理中获得了十分广泛的应用。如:信号检测与分类,吋频域滤波,信号综合,系统辩识和谱估计等。在的期刊和国际会议上发表的与采用时频工具处理非平稳干扰有关的论文及研究报告共有余篇,其中以美国大学教授的成果最为显著。时频分析是一个前景很广阔的研究方向,虽然取得了一定的成就,但理论体系尚不十分完备,需要进一步的发展。参考文献[1ˉ张贤达,保铮《非平稳信号分析与处理》[M1998年9月第1版国防工业出版社[2ˉ沈民奋,孙丽莎《现代随机信号与系统分析》M年月第版科学出版社[3丁凤芹,曹家麟《基丁分数阶傅里叶变换的多分量 Chirp信号的检测与参数估计》《语音技术》2004年第1期[4_孙泓波,郭欣,顾红,苏上民,刘国岁《修正 Chirp- Flourier变换及其在SAR运动目标检测中的应用》《电子学报》2003年第1期山国技记文在线[5董永强,陶然,思永,王越《基丁分数阶傅里叶变换的SAR运动目标检测与成像》《兵工学报》1999年第2期L6_陶然,齐林,王越《分数阶 Fourier变奂的原理与应用》LM」2004年8月第1版清华大学出版社[7董永强,陶然,周思永,王越《含未知参数的多分量 chirp信号的分数阶傅里叶分析》《北京理工大学学报》1999年第5期[8ˉ陈辉,王永良《利用离散 Chirp- Flourier变换技术估计调频信号参数》《空军雷达学院学报》2001年第1期[9ˉ齐林,穆晓敏,朱春华《系统中基于 Chirp- Fourier变换的扫频干扰抑制算》《电讯技术》年第期[10]李勇,徐震等《 MATLAB辅助现代工程数字信号处理》[M2002年10月鷥1版西安电子科技人学出版社「111胡昌华,周淘,夏启兵,张伟《基于 MATLAB的系统分析与设计—时频分析》「M12001年7月第1[2]干小宁,许家栋《离散调频-傅里叶变换及其作雷达成像中的应用》《系统工稈与电子技术》2002年第3期
    2020-12-02下载
    积分:1
  • wifi无线定位
    基于wifi的无线定位程序,基本思路是利用场强RSSI进行位置判断
    2021-05-07下载
    积分:1
  • 模拟AM与FM调制解调系统
    实验 1 :模拟AM调制解调系统幅度调制解调技术是一种最简单的模拟调制方法,而且通过幅度调制容易理解调制的概念。本实验通过 LabVIEW 编程产生信号频率、幅度等参数可变的基带信号和载波信号,实现 AM 调制和解调,观察参数变化对已调信号的影响。并通过仿真运行整个 AM 调制解调系统,学习掌握代码调试方法,验证程序的正确性。实验 2 :模拟FM调制解调系统利用 LABVIEW 仿真,产生基带信号频率、载波频率及频偏等参数可变的 FM 调制解调系统,观察参数变化对被调制信号以及其 FFT 功率谱的影响。并通过仿真运行整个 FM 调制解调系统,学习掌握代码调试方法,验证程序代码的正确性。通信原狸与系统实验报告【程序设计】1、总体程序实验1:模拟AM调制解调系统AM信亏波形翌(时)波信号上边带下边带正弦波形(时域)载波幅值制信号湖形图(时域)调制值颗谱测量AM洞制信号波形因(罚信号「·(峰值100000实验2:模拟FM调制解调系统载波率f(Hz)仿真信号3网回區最大偏移量f(Hz仿真信号2信号基带率和b(HzPower SpectruA圆周信号域仿真信号FM调制信号弦10000001000000导数dxdt)Simulate正弦通信原理与系统实验报告2、部分函数图音分函数图Hilbert变换函数部至复数转换复数至极坐标转换交流和直流分量估计归一化波形【实验内容】实验1:模拟AM调制解调系统1、按(P2713)的实验步骤1完成AM调制2、按(P2)的AM解调原理的提示完成AM解调根据实验教程,仿真信号快速ⅥI与频谱测量快速Ⅵ发其最终对话框选项设置如下:信号关型O幅(均方慢)加后的辅轴入信号5.583643幅度(峰直盐r变谱功增密赏占空比5.5050450D2040.60B口加难声声型099999阳果览种子值验时识相对于更开时间吧对(日期与时于均数日100000仍真平集时轴更信号采枉盈重置相位,种子和时标识乐月连续生成生递每次环口整数需吗数信号名称实玩无样数10o信号名称取商在前面板中设置参数如卜:载波幅值调制幅值11.:1戴冷200m1……4006008001000020406080100120140160180200调制频率0250500750100012501500175020000204060801001201401601802004通信原理与系统实验报告设置好参数后,运行程序,结果如图所示载波信号波形(时域)弦M4M制信号波形(时域正弦20020015050-15020020000.020.040.060.080.100.020.040.060.080.1时间时间AM调制信号形图(数城)开F:(值)四4M解号形(时城)5002050150200-15010020030040050000.020.040.060.080.1频率时间分析:观察“AM调制信号波形图(时域)”图可知:经过AM调制将调制信号加载到载波信号上后,形成的包络恰好与基带信号一致。观察“ΔM调制信号波形图(频域)”图可知:最左边的频谱为基带信号的频谱,而右边的三个频谱从左到右依次为下边带fc-fb,载波fe,上边带fc+fb的频谱。观察“AM解调信号波形图(时域)”图可知:解调后的信号与基带信号基本重合,说明运用包络检波法解调信号成功。改变实验参数增大基带信号的幅度,其他参数不变分析:如下图所示,前两幅图分別为增大基带信号幅度前的调制信号的时域图和频域图,后面两幅图为增大基带信号幅度后的调制信号的吋域图和频域图。通过观察图像可发现:增大基带信号樞度,其他参数不变的情况下:调制信号在时域上的幅度随基带信号幅度的增大而増大,而频域上不发生变化。5通信原狸与系统实验报告AM调制信号波形图(时域)AM调制信号波形(频域)应(F·(值)3005020050100200150300200-00.020.040.060.080.1100200300400500时间AM调周制信号波形图(时城)AM调制信号波形图(频域)正弦(FT·(峰值)50200100-1001002003000.020.040.060.080.10100200300400500时间频率增大基带信号的频率,其他参数不变分析:如下图所示,前两幅图分别为增大基带信号频率前旳调訇信号的时域图和频域图,后面两幅图为增大基带信号频率后的调制信号的时域图和频域图。通过观察图像可发现:增大基带信号频率,其他参数不变的情况下:调制信号在时域上的频率随基带信号频率的增大而增大,而频域上也发生了右移。AM调制信号波形图(时域MAM调制信号波形图(城)F·(峰值))M5020010050100200150-30020000.020.040.060.080.10100200300400500时间频率通信原理与系统实验报告AM调制信号波形图(时域)AM调制信号波形图(颈域)正弦·(峰值)50-200100500100-10020030020000.020.040.060.080.10100200300400500时间增大载波信号的幅度,其他参数不变分析:如下图所示,前两幅图分别为增大载波幅度前的调制信号的时域图和频域图,后面两幅图为增大载波幅度后的调制信号的时域图和频域图。通过观察图像可发现:增大载波幅度,其他参数不变的情况下:调制信号在时域上的幅度随载波信号幅度的增大而增大,而频域上不发生变化。AM调制信号波形图(时域)正弦AM调制信号波形圈(频域)H·(峰值)30050200010-500-100-200-150300-20000.020.040.060.080.10100200300400500时间频率AM调制信号波形图(时域)正弦AM制号形(炫)芷奸:()人503000200100细10020015030040020000.020.040.060.080.110200时间频率通信原狸与系统实验报告增大载波信号的频率,其他参数不变分析:如下图所示,前两幅图分别为增大载波频率前的调制信号的时域图和频域图,后面两幅图为增大载波频率后的调制信号的时域图和频域图。通过观察图像可发现:增大载波频率,其他参数不变的情况下:调制信号频率在时域上的频率随载波信号频率的增大而增大,而频域上也发生了右移。AM调制信号波形图(时城正弦AM调制信号波形图(颁域)正弦任FT·(峰值)3002000100200-300-20000.020.040.060.080.10100200300400500时间频率AM调制信号波形图(时域)正凶M制儒号形图(域):(峰)300502001000-100-20030020000.020.040.060.080.10100200300400500时间实验2:模拟FM调制解调系统、按(322.3)实验内容完成FM的调制2、按(3223)的实验内容元成FM的解调根据实验教程,仿真信号快速Ⅵ与频谱测量快速ⅥI及其最终对话框选项设置如下通信原理与系统实验报告配雪仿真信号[真台号3]生造量结果预范所选到早3、02691幅度(蜂值位(D功幸造C线性O功率造移量占空比O092Hanning君果候嚣均方根对测经开始间保待O姆对(日期与时词)半均数目C仿真菜对钟申仨号·以可达到最速度运行里相位种了和时标日相位軍预100日)来用端牛应信号名称O当平均时用信号类型名偏学会称□开相位150200250300350400450500阳确定联群取篇□帮数在前面板中设置参数如下:基带频率fb(Hz)载波频率fe(Hz)20000400006000080000100000110000033000005000007000009000001E+6最大偏移量t(Hz)20000400006000080000100000120000140000160000180000205410设置好参数后,运行程序,结果如图所示基带信号(时域正弦A载反信号(时域)正弦0.5000.5-0.505E-50.00010000150.00025E-50.00010.000150.0002时间时间时城须域FM调制信号(时域正弦0.50.52E-6E-58E-50.00010.000120.000140.000160.000180.0002时司通信原理与系统实验报告时域频域FM调制信号(域)正弦(功率-1002000500000150000025000003500000450000055000006500000750000085000001E+7频率FM解调信号(时域)正弦2E-56E-58E-50.00010.000120000140.000160.000180.0002时间分析:观察“FM调制信号(时域)”图与“FM调制信号(频域)”图可知:经过FM调制后产生的波形与原理相符合;观察“AM解调信号波形图(时域)”图可知:解调后的信号与基带信号基本重合,说明运用非相关包络检波法解调信号成功。改变实验参数≯增大基带信号的频率,其他参数不变分析:如下图所示,前两幅图分别为增大基带信号频率前的调制信号的时域图和频域图,后面两幅图为增大基带信号频率后的调制信号的时域图和频域图。通过观察图像可发现:增大基带信号频率,其他参数不变的情况下:调制信号在时域上的频率随基带信号的频率的增大而增大。
    2021-05-06下载
    积分:1
  • 基于单片机的室内空气质量检测仪的设计
    随着我国经济的发展,人民生活水平的提高,人们对环境问题及健康问题日益重视,室内空气品质(IAQ)状况受到越来越多的关注。人的一生中有三分之二的时间是在居室内度过的。本文研究的室内便携式智能空气品质监测仪是以室内空气中有毒有害气体的监测监控为背景,是以ATMEL工公司的一款8位超低功耗单片机AT89S52为控制核心,能够实现对室内温度,湿度,甲醛,苯和氨的实时采集处理、显示、报警等功能。仪器采用锂电池供电,具有良好的便携性和通用性,并且使用LCD1602点阵式液晶屏显示菜单,有良好的人机对话界面。同时设计了声光报警系统,实现在参数超标时及时的报警。室内智能空气品质监测仪体积小,功耗低,操作简单,
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载