登录
首页 » Others » asp+sql 办公自动化管理系统oa +源码+毕业设计

asp+sql 办公自动化管理系统oa +源码+毕业设计

于 2020-12-01 发布
0 114
下载积分: 1 下载次数: 1

代码说明:

asp+sql 办公自动化管理系统oa +源码+毕业设计 asp+sql 办公自动化管理系统oa +源码+毕业设计

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 利用模拟退火算法实现矩形件排样
    利用模拟退火算法,基于最优下线编码方式,对矩形件进行下料处理。
    2020-12-02下载
    积分:1
  • 自己动手制作CPU与单片机源码
    自己动手制作CPU与单片机源码随书资料理论与实战密切结合没有不能逾越的鸿沟。深刻简洁的计算机理论和方法能让你攀登最高峰。不亲自设计CPU的人很难以理解计算机的真谛。
    2021-05-07下载
    积分:1
  • 机器学习Lasso回归重要论文和Matlab代码
    机器学习和稀疏表示中Lasso问题的经典论文和LARS算法代码。其中有Lasso提出者的一篇不可多得的综述性文章,以及LARS求解方法的论文和matlab代码。觉得不错的,赞一个!
    2020-06-19下载
    积分:1
  • 警用数字集群(PDT)通信系统总体技术要求
    警用数字集群(PDT)通信系统总体技术要求9电气安全,2410电源适应性2411机械结构安全241.1结构..·.·2411.2表面温度.2412环境和电磁兼容要求·鲁专2512.1环境适应性2512.2电磁兼容性要求.13可靠性要求13.1信道设备可靠性55513.2控制和链路设备的可靠性.14运输和包装要求,,。非2图1网络基础设备示意图图2完全对等的系统互联网络架构。。。19图3 PDT-MPTI1327互联结构···.········,,,,.20图4安全机制示意图24表1PDT设备主要功能要求,。10表2信道设备总体性能指标表3基地台的发射机和接收机的射频指标.·非·静·着·非。章申·21表4手持台的发射机和接收机的射频指标。鲁表5车载台的发射机和接收机的射频指标1范围本技术要求规定了警用数字集群(PD)通信系统的技术特性、系统构成和功能要求作频段、网络管理、信道设备基本性能指标、交流供电系统、信息安仝和保密、环境和电磁兼容、可靠性等总体性要求。木技术要求适用」警用数字集群(PDT)通信系统的总体规划、网络设计、设备开发、生产、工程建设和验收2系统技术特性2.1基本技术体制2.1.1技术体制2.1.1.1信道划分米用频率和时间分割的方法划分信道。频率分割是在给定的350MHz到390Mz频段内按12.5kz信道间隔和10Ⅷz收发间隔划分载波信道。其他频段按照国家无线电管理部门的有关规定执行。时间分割时釆用时分复用/时分多址(TDMA)技术划分时隙信道。规定每载波时隙为两个,即物理信道为两个,再根据需要设置务和控制逻辑信道。2.1.1.2区域覆盖对于无线服务区的覆盖采用下列技术:大区制覆盖;频率复用;准同步发射;分时共享发射;直通模式⑩)/中转模式(RMO)/集群模式(TMO2.1.2射频调制方式射频调制方法采用四电平频移键控(4『SK)。2.1.3调制速率调制发送4800符号/秒,每个符号由两个比特信息组成。2.1.4语音编码语音编码速率应不低于2kbps,语音编码加上信道编码后的速率应为3.6kbpS2.2系统基本业务2.2.1用户终端业务用户终端业务是为用户终端之间提供完整通信能力的业务,系统应提供下列用户终端业务:语音和数据业务电话互联业务。2.2.2承载业务承载业务是在用户终端与网终接口之间提供信号传输能力的电信业务系统应提供下列承载业务:语音和电路数据传输业务短数据传输业务;分组数据传输业务2.3基本协议和信令基本协议和信令应符合警用数字集群(PDT)通信系统系列技术标准中所规定的有关协议和信令。2.4系统工作方式集群工作方式移动台在集群控制设备管理下的信道共享工作方式。2.4.2直通工作方式移动台之间直接互通的工作方式。2.4.3中转工作方式移动台通过中转台进行通信的工作方式2.4.4故障弱化工作方式基站和交换节点之间的链路或交换节点发生故障时,基站仍能以集群方式继续工作,支持本基站基本呼叫业务(单呼、组呼等)2.5呼叫建立时间同一交换局内组呼建立时间应不大」300ms。3系统构成和功能要求3.1系统构成3.1.1网络基础设备网络基础设备包括交换机、网关、网络管理设备、基站控制设备和基地台等,见图1。网关交换机网络管理设各基站基站基地台基地台基地台基地台图1网络基础设备示意图3.1.2用户终端设备用户终端设备包括移动台、有线台和调度台3.1.2.1移动台通过空屮接口和网络基础设备相连的普通用户终端设备,包括车载台、手持台等3.1.2.2有线台通过有线方式和网络基础设备相连的普通用户终端设备3.1.2.3调度台具有调度功能的用户终端设备,包括有线调度台和无线调度台。有线调度台通过有线方式和网络基础设备相连的调度台。无线调度台通过空中接口和网络基础设备相连的调度台3.2功能要求3.2.1功能定义3.2.1.1登记登记是移动台向集群系统发起入网请求及确认的过程,登记时必须要求进行鉴杈3.2.1.2去登记去登记是移动台向集群系统发出退出系统的通知过程。3.2.1.3漫游在由多个基站联网的系统中,移动台在归属基站以外的基站进行登记和继续使用系统提供的业务的功能3.2.1.4语音单呼语音单呼是移动台与其它用户终端之间建立的一种点对点的双冋语音呼叫,呼叫的参与方只有主叫和被叫两方。移动台之间的语音单呼分为 TOACSU和OACS两种。3.2.1.5语音组呼语音组呼是由·个移动台或者调度台发起的,多个移动台参与的点对多点的语音呼叫。3.2.1.6组呼迟入某个组呼建立后至结束之前,控制信道冑期广播该组呼的建立信息,以保证刚开机或刚从其他基站漫游到该基站或刚从其他通话组释放出来的移动台能参与这个尚未结束的组呼。3.2.1.7组呼并入个组呼建立后至结束之前,某移动台呼叫这个已经建立的通话组,系统将该移动台作为被叫并入到已经建立的组呼。3.2.1.8广播呼叫播呼叫是一种特殊的语音组呼,呼叫建立后在业务信道上只有主叫具备发射权限,被叫用户只有接收权限,可以有效防止被叫用户干扰主叫的发射过程。3.2.1.9紧急呼叫紧急呼叫是用户在紧急情况下发起的一种特殊呼叫,具有最髙优先级,当无信道资源时,系统会释放其他低级别呼叫的信道资源来给紧急呼叫使用。3.2.1.10优先呼叫优先呼叫是指系统繁忙时优先获取资源的呼叫,获取资源的方式可以是抢占低优先级呼叫的信道,也可以是在排队队列中插队3.2.1.11报警报警是在紧急情况下用户通过操作移动台设备上的特姝按钮,在系统控制信道上向预先设冒的目的(移动台或者调度台)发送预定义的状杰消息,通知其他移动台或者调度台,该用户正处于紧急危险的状态。3.2.1.12环境侦听环境侦听是调度台向移动台发起的一种特姝呼叫,用于监听移动台周边的环境声音。被叫移动台在系统指定的业务信道上自动打开发射机和MIC,将环境声音发送给调度台。在整个环境侦听过程中(侦听建立、侦听发射、侦听结朿),移动台的显示、扬声器、提示音、指小灯等人杋芥面状态应与空闲待机时完全相冋。环境侦听过程中,如果移动台用户进行呼岀操作(包括发短消息等),环境侦听都应自动结束,)返冋控制信道。调度台可以随时结宋·个由其建立的环境侦听呼叫3.2.1.13监听监听是指授权用户终端获取指定的移动台、通话组或者信道上的语音的过程。3.2.1.14插话插话是指调度台在监听或参与语音通话的过程中,强制中断正在进行的讲话,夺取话权进行讲话;3.2.1.15强拆强拆是指系统强制中断正在进行的呼叫并释放所占的相应资源的过程3.2.1.16越区切换越区切换是指移动台在语吝通话的过程中切换基站而不闩断止在进行的业务的过程3.2.1.17通话限时通话限时是系统控制用户进行语音呼叫时允许的最大持续时间的功能,包括单次按讲限时和单次呼叫总时长限时3.2.1.18讲话方身份识别讲话方身份识别是指在语音呼叫的过程中,语音接听方利用随路信令或者嵌入信令识别当前讲话方身份的功能3.2.1.19PTT授权PTˆ授权是为了避免语音碰撞而规定的讲话权申请、分配控制过稈,只有获得讲话权的移动台才能发射语音。3.2.1.20遥毙遥毙是系统利用空∏信令禁用移动台的过程,被遥毙的移动台将失去所有操作功能,只有利用授权的编稈设备才能将被遥毙的移动台激活3.2.1.21遥晕遥晕是利用空口信令禁用移动台的过程,授权的网管终端或调度台可将目标移动台遥晕。被遥晕的移动台不能发起或者接收仼何网络的服务(包括各类呼叫、短消息等业务),但应保留登记、去登记、鉴权、复活和数据上拉服务(如玊星定位信息上拉服务等),用来帮助寻找丢失移动台。被遥晕的移动台可以通过空凵复活。3.2.1.22复活复活是利用空∏信令解禁被遥晕移动台的过程,授杖网管终端或调度台可以进行复活操作,使移动台恢复到正常工作状态3.2.1.23动态重组动态重组是授权网管终端或调度台利用空口信令向目标移动台临时增加通话组(动态组)的过程,移动台新增加的动态组在收到删除该动态组的信令前一直有效。授权的网管终端或调度台也可以利用空口信令将日标移动台中的动态组删除。3.2.1.24呼叫限制呼叫限制是系统对移动台的呼叫权限的控制,通过设置,限制其呼叫功能。移动台只能进行权限范围内的呼叫,超过权限范围的呼叫将被系统拒绝。3.2.1.25状态消息状态消息是指移动台之间或者移动台与调度台之间,利用控制信道传递7比特消息编码的过程。状态消息可以是点到点的单呼,也可以是点对多点的组呼。3.2.1.26短消息短消息是移动台之间或移动台与调庋台之间,利用控制信道传递有限长度消息的过程短消息可以是点到点的单呼,也可以是点对多点的组呼。PDT系统中,单条短消息的长度为23个汉字。3.2.1.27卫星定位信息传输卫星定位信息传输是指移动台利用空∏信令上传该移动台卫星定位信息的过程。3.2.1.28网络管理网络管理是为了保证系统的正常运行而进行的一些参数配置、运行状态监控、用户档案管理等操作。网络管理至少应具备用户管理、配置管理、故障管理、性能管理和安全管理等功能集。3.2.1.29安全功能安全功能包括鉴权、端到端加密和空口加密3.2.1.30PDT系统之间的互联PDT系统之闫的互联是利用规定的互联协议完成PD交换控制中心之间的信息交互,实现系统间漫游及呼叫控制等功能。3.2.1.31有线电话呼叫有线电话呼叫是移动台利用空口及系统网关设备与PAB、PSTN等有线电话之问进行的呼3.2.1.32功率控制系统利用空口信令调整移动台的发射功牽,达到保障通信效果和降低移动台功耗日的。3.2.1.33包容呼叫包容呼叫是移动台在已经建立呼叫的业务信道上发起的,将其他目标移动台拉入当前业务信道通话的呼叫。3.2.1.34呼叫转移呼叫转移是指把来电转栘到预先设定的其他号码上的业务。呼叫转移叮由自身或第三方设置和取消,转移的条件分为无条件转移和有条件转移。3.2.1.35繁忙排队繁忙排队是当系统业务信道资源全忙时,系统将新发起的呼叫排入呼叫等待队列,待系统有空闲资源时对等待队列中的呼叫进行处理的过程。3.2.1.36分组数据分组数据是利用系统的业务信道,遵循分组数据传输协议实现多用户共享业务信道,进行数据传输的业务过程。3.2.1.37空口加密空∏加密是对移动台与基站之问空∏信令和语音、数据等业务信息的加密。3.2.1.38限定基站呼叫限定基站呼叫是指系统可以利用参数配置限定呼叫参与基站的范围,配置范围外的基站不参与该呼叫。3.2.2PDT设备主要功能要求PDT设备主要功能要求见表1。表1PDT设备主要功能要求编号功能网络基础设备移动台调度台1登记、去登记、鉴权、漫游单呼组呼4组呼迟入组呼并入6广播呼叫紧急呼叫789报警环境侦听监听、插话、强拆越区切换12通话限时13讲话方身份识别14PTT授权遥毙16遥晕、复活
    2020-12-10下载
    积分:1
  • 小波包分解与重构、能量谱 MATLAB代码
    matlab函数两个:一个是能量谱。 一个是小波包分解与重构;可以自己更改成一个程序,可以达到能量特征提取的目的
    2021-05-06下载
    积分:1
  • 重复控制器的matlab/simulink仿真
    使用simulink做的重复控制器的仿真
    2020-11-28下载
    积分:1
  • 受限波尔兹曼机(Restricted Boltzmann Machines)介绍
    RBM在深度学习(deep learning)算法中有着非常重要的应用,本文介绍了RBM的基本概念,并介绍了几种有代表性的算法。作者西安交大张春霞,姬楠楠,王冠伟。山国武技亡文在线应用的热潮。理论方面,RBM的CD快速学习算法促进了研究者们对随机近似理论、基于能量的模型、未归一化的统计模型的研究⑧。应用方面,RBM目前已被成功地应用于不同的机器学习问题⑨-14,如分炎、回归、降维、高维时闾序列建模、图像特征提取、协同过滤等等。2006年, Hinton等人[15提出了一种深度信念网终( Deep Belief Nets,DBN),并给出了该模型的一个髙效学习算法。这个算法成为了其后至今深度学习算法的主要框架。在该算法中,个DBN模型被视为由若干个RBM堆叠在起,训练时可通过由低到高逐层训练这些RBM来实现:(1)底部RBM以原始输入数据训练;(2)将底部RBM抽取的特征作为顶部RBM的输入训练;(3)过程(1)和(2)可以重复来训练所需要的尽可能多的层数。由于RBM可以通过CD快速训练,这一框架绕过了直接从整体上训练DBN的高复杂度,从而将其化简为对多个RBM的训练冋题。 Hinton建议,经过这种方式训练后,叮以再通过传统的全局学习算法(如反向传播算法)对网络进行微调,从而使模型收敛到局部最优点。这种学习算法,本质上等同于先通过逐层RBM训练将模型的参数初始化为较优的值,再通过少量的传统学习算法进一步训练。这样一来,不仅解决了模型训练速度慢的问题,大量试验结果也表明,这种方式能够产生非常好的参数初始值,从而大大提升了模型的建模能力。自此,机器学习领域又产生了一个新的研究方向-深度学习( Deep learning)[1618],明确提出了面向人工智能的机器学习算法的设计目标。当前,以RBM为基本构成模块的DBN模型被认为是最有效的深度学习算法之一。鉴于RBM在深度学习领域中占据的核心位置以及其本身的良好性质,为了给RBM的初学者提供入门指导,同时为设计与之相关的新算法提供参考,本文将对RBM进行较为系统的介绍,详细阐述其基本模型、具有代表性的快速学习算法、参数设置、评估方法及其变形算法,最后对RBM在未来值得硏究的方向进行探讨。本文后续内容安排如下:第1节介绍受限波尔兹曼机RBM的基本模型,第2节详细阐述当前训练RBM的快速学习算法,第3节讨论RBM的参数设置,第4节给出评价RBM优劣的方法,第5节简单介绍几种具有代表性的RBM变形算法,第6是总结与展望,主要探讨RBM在未米值得研究的方向。1受限波尔兹曼机RBM的基本模型RBM也可以被视为一个无向图 undirected graph)模型,如图2所示。v为可见层,用于表示观测数据,h为隐层,可视为一些特征提取器( feature detectors),W为两层之间的连接权重。 Welling19指出,RBM中的隐单兀和可见单元可以为任意的指数族单元(即给定隐单元(可见单元,可见单元(隐单元)的分布可以为任意的指数族分布),如 softmax单元、高斯单元、泊松单元等等。这里,为了讨论方便起见,我们假设所有的可见单元和隐单元均为二值变量,即V,j,v∈{0,1},h;∈{0,1}如果一个RBM有m个可见单元和m个隐单元,用向量v和h分别表示可见单元和隐单元的状态。其中,v;表示第个可见单元的状态,h表示第个隐单元的状态。那么,对于一组给定的状国武技论义在线隐层h可见层v图2:RBM的图模型表示,层内单元之间无连接态(v,h,RBM作为一个系统所具备的能量定义为∑a"2-∑bh-∑∑上式中,O={Wn,a,b}是RBM的参数,它们均为实数。其中,W表示可见单元;与隐单元j之间的连接权重,;表小可见单元的煸置(bias),b;表小隐单元j的偏置。当参数确定时,基于该能量函数,我们可以得到(v,h)的联合概率分布,E(v, ho)P(v, h0Z(0)=∑e-E(v, h ez(6)(2其中z(0)为归一化因子(也称为配分函数, partition function)时于一个实际问题,我们最关心的是由RBM所定义的关于观测数据v的分布P(ve),即联合概率分布P(v,h)的边际分布,也称为似然函数( likelihood functionP(v8∑E(v, h 0)3)Z(0为了确定该分布,需要计算归一化因子z(),这需要2n+m次计算。因此,即使通过训练可以得到模型的参数W,α和b,我们仍旧无法有效地计算由这些参数所确定的分布。但是,由RBM的特殊结构(即层间有连接,层内无连接)可知:当给定可见单元的状态时,各隐单元的激活状态之间是条件独立的。此时,第j个隐单元的激活概率为P(h=1v,O)=o(+∑W其中,O(x)1+exp(-a)为 sigmoid激活函数由于RBM的结构是对称的,当给定隐单元的状态时,各可见单元的激活状态之间也是条件独立的,即第i个可见单元的激活概率为11)=o(a+∑Wh1国武技论义在线2基于对比散度的RBM快速学习算法学习RBM的任务是求出参数θ的值,以拟合给定的训练数据。参数0可以通过最大化RBM在训练集(偎设包含T个样本)上的对数似然函数学习得到,即A=arg max C(0)=arg max>log(6为了获得最优参数θ^,我们可以使用随札梯度上升法( stochastic gradient ascent)求C(6)=∑1lgP(vθ)的最大值。其中,关键步骤是计算logP(v()关于各个模型参数的偏导数由于c(O)=∑ log p(vo)=∑og∑Pv"),het=1∑1pBw,b∑pE(,hO)-lg∑∑oxp-E(,h)令0表示6中的某个参数,则对数似然函数关于的梯度为OC、、8(og>expl-E(v(t),h)-10e∑∑∑ep-E(v,hO)exp[-e(vo,ho) d(E(vo),h0))(Σ h exp[-E(v,hO>∑8+E(-E(v,h)06∑0(-E(v(0,hl(-E(v,h6)S06P(hv(t),0)P(v, h0)其中,()P表示求关于分布P的数学期望。P(hv),)表示在可见单元限定为已知的训练样本v()时,隐层的概率分布,故式()中的前一项比较容易计算。P(v,h0)表示可见单元与隐单元的联合分布,由于归一化因子z(θ)的存在,该分布很难获取,导致我们无法直接计算式(8)中的第二项,只能通过一些采样方法(如Gibs釆样)获取其近似值。值得指出的是,在最大化似然函数的过程中,为了加快计算速度,上述偏导数在每一迭代步中的计算一般只基于部分而非所有的训练样本进行,关丁这部分内容我们将在后面讨论RBM的参数设置时详细阐述。下面,假设只有一个训练样本,我们分别用“data”和“modl”来简记P(hv(),6)和P(v,h)这两个概率分布,则对数似然函数关于连接权重W、可见层单元的偏置a和隐层单山国科技论文在线元的偏置b;的偏导数分别为alog P(v8ihi idata -(ihi,modelalog P(v 0)datai ) modela log P(v 8=(hi)data(hi model2.1RBM中的 Gibbs采样Gibs采样( Gibbs sanpling)[20是一种基于马尔可夫链蒙特卡罗( Markov chain monteCarlo,MCMC)策略的采样方法。对于一个K维随机向量X=(X1,X2,……,Xk),假设我们无法求得关于X的联合分布P(X),但我们知道给定X的其他分量时,其第k个分量Xk的条件分布,即P(Xk|Xk),Xk-(X1,X2,…,Kk-1,Xk+1,…,Xk)。那么,我们可以从X的一个任意状态(比如{c1(0),x2(0),…,xk(O))开始,利用上述条件分布,迭代地对其分量依次采样,随着采样次数的增加,随机变量[r1(m),x2(m),…,xk(n)]的概率分布将以n的几何级数的速度收敛于X的联合概率分布P(X)。换句话说,我们可以在未知联合概率分布P(X)的条件下对其进行样。基于RBM模型的对称结构,以及其中神经元状态的条件独立性,我们可以使用 Gibbs采样方法得到服从RBM定义的分布的随机样本。在RBM中进行k步吉布斯采样的具体算法为:用一个训练样本(或可见层的任何随机化状态)初始化可见层的状态v,交替进行如下采样:ho w P(h vo), V1 P(v ho),h1 n P(hv1),P(vhP(v hk)在采样步数k足够大的情况下,我们可以得到服从RBM所定义的分布的样本。此外,使用Gib样我们也可以得到式(8)中第二项的一个近似。22基于对比散度的快速学习算法尽管利用吉布斯采样我们可以得到对数似然函数关于未知参数梯度的近似,但通常情况下需要使用较大的采样步数,这使得RBM的训练效率仍旧不高,尤其是当观测数据的特征维数较高时。2002年, Hinton7提出了RBM的一个快速学习算法,即对比散度( Contrastive DivergenceCD)。与吉布斯采样不同, Hinton指出当使用训练数据初始化vo时,我们仅需要使用k(通常k=1)步吉布斯采样使可以得到足够好的近似。在CD算法一开始,可见单元的状态被设置成个训练样本,并利用式(4)计算所有隐层单元的二值状态。在所有隐层单元的状态确定之后,根据式(5)来确定第个可见单元v;取值为1的概率,进而产生可见层的一个重构 reconstruction)国武技论义在线这样,在使用随杋悌度上升法最大化对数似然函数在训练数据上的值时,各参数的更新准则为△Wx=(vh;)ata-(vhrecondata这里,是学习率( (learning rate),{}reon表示一步重构后模型定义的分布在RBM中,可见单元数一般等于训练数据的特征维数,而隐单元数需要事先给定。为了与前文记号致,假设可见单元数和隐单元数分别为和m。令W表示可见层与隐层间的连接权重矩阵(m×m阶),a(n维列向量)和b(m维列向量分别表示可见层与隐层的偏置向量。RBM的基于CID的快速学习算法主要步骤可描述如下输入:一个训练样本xo;隐层单元个数灬m;学习率e;最大训练周期T●输出:连接权重矩阵W、可见层的偏置向量a、隐层的偏置向量b.·训练阶段初始化:令可见层单元的初始状态v1=x0;W、a和b为随机的较小数值。For t=1.2TFor j=1,2,…,m(对所有隐单元)计算P(h1=11),即P(h1;=1v1)=0(b+∑,从条件分布P(h1v)中抽取h∈{0,1}EndFor上ori=1,2,……,m(对所有可见单元计算P1h1,即P(v2=1h1)=0(a+∑,Wh1);从条件分布P(v2h1)中抽取v2∈{0,1}EndOForj=1.2,…,m(对所有隐单元)计算P(h2=1v2),即P(h2y=1lv2)=a(b;+∑;2:W7);Endfor按下式更新各个参数W←W+∈(P(h1.=1v1)lv2)V2);a←-a+((v1-v2);+c(P(h1=1v1)-P(h=1)v2)山国科技论文在线Endfor算法1.RBⅥ的基于CD的快速学习算法主要步骤在上述算法中,记号P(hk.=1|vk)(k=1,2)是m维列向量,其第个元素为P(h;=1vk)尽管上述基于CD的学习算法是针对RBM的可见单元和隐层单元均为二值变量的情形提出的,但很容易推广到可见层单元为高斯变量、可见层和隐层单元均为高斯变量等其他情形,关于这方面的研究具体可参见[2125此外,还有一些研究者在CD算法的基础上,对其作了进一步改进。例如, Tieleman②26提出了持续对比散度( Persistent contrastive divergence,PCD)算法,该算法与CD的区别在于首先,PCD不再使用训练数据初始化CD算法中的 Gibbs采样的马氏链;其次,PCD算法中的学习率较小且不断衰减。根据随机近似理论,尽管每次更新参数后模型都发生了改变(每次对于W,a和b的更新,RBM定义的分布都会发生改变),但由于学习率较小且不断衰减,则可认为那条马氏链产生的负样本是由当前RBM定义的分布的一个近似分布米样而来Tieleman和 Hinton[27进一步改进了PCD算法,他们通过引入一组辅助参数以加快PCD中的马氏链的混合率,提出了快速持续对比散度( Fast Persistent Contrastive Divergence,FPCD)算法。关于RBM的学习算法,除了上述提到的基于CD的一些方法之外,还有最大化拟似然函数( maximum pseudo- likelihood)、比率匹配方法 (ratio matching)等,有兴趣的读者可参阅[28]查找关于RBM学习算法比较详细的阐述。3RBM的参数设置RBM的训练通常是基于CD的方法(即算法1)进行的,但如何设置其中的些参数(如隐单元个数、学习率、参数的初始值等),是需要有一定经验的。近来,已有部分研究结果②29,30表明:对于特定的数据集和RBM结构,如果参数设置不合适,RBM将很难对真正的数据分布正确建模。因此,对实际使用者(尤其是初学者)米说,了解RBM中参数设置的一般规则是非常重要的。根据 Hinton{23]提供的建议以及我们进行数值试验所获部分经验,对RBM中的参数设置可参考以下规则。小批量数据及其容量对于连接权重、可见层和隐层偏置的更新,虽然可以基于一个训练样本进行(类似于在线学习的方式),但计算量将很大。将训练集事先分成包含几|或几百个样本的小批量数据(mini- batches)进行计算将更高效,这主要是可以利用图形处珥器GPU( graphicProcessing Unit)或 Matlab屮矩阵之间相乘运算的优势。同时,为了避免在小批量数据的样本容量发生改变时,学习率也必须做相应的修改,通常的做法是在参数的更新过程中,使用参数的平均梯度(即总梯度除以数据容量),即B(t+1(t+1)=0(+∑alog P(v(t)aB06t′=Bt+1这里,B表示小批量数据的容量,其值不应设得太大。B=1表示参数更新以在线学习的方式进行,而B一T则表示传统的批处理方式。一股而言,若训练集是包含来自不同类(具有同等概山国武技亡文在线率)的样本,理想的B应为总类数、使得每批数据屮都包含来自每个类的一个样本,以减小悌度估计的抽样误差。对于其他数据集.则可先随机化训练样本的次序,再将其分为容量为10的倍数的小批量数据。学习率学习率若过大,将导致重构误差急剧增加,权重也会变得异常大。设置学习率的一般做法是先做权重更新和权重的直方图,令权重更新量为权重的10-3倍左右。如果有一个单元的输入值很大,则权重更新应再小些,因为同·方向上较多小的波动很容易改变梯度的符号。相反地,对于偏置,其权重更新可以大一些。权重和偏置的初始值一般地、连接权重W可初始化为来自正态分布N(0,0.01)的随机数,隐单元的偏置b初始化为0。对于第讠个可见单元,其偏置az通常初始化为logP/(1-p),其中γ;表示训练样本中第讠个特征处于激活状态所占的比率。如果不这样做,在学习的早期阶段,RBM会利用隐单元使得第个特征以概率p处于激活状态。动量学习率学习率e的选择至关重要.ξ大收敛速度快,但过大可能引起算法不稳定;c小可避免不稳定情况的出现,但收敛速度较慢。为克服这一矛盾,一种具有代表性的思想是在参数更新式中增加动量项 momentum),使本次参数值修改的方向不完全由当前样本下的似然函数梯度方向决定,而采用上一次参数值修改方向与本次梯度方向的组合。在某些情况下,这可以避免算法过早地收敛到局部最优点。以连接权重参数W为例,其更新公式为W(+D)kw(t)aL(t)其中k为动量项学习率。开始时,k可设为0.5,在重构误差处于平稳增加状态时,k可取为0.9权衰减使用权衰减( weight- decay)策略的主要目的是避免学习过程出现过拟合( overfitting)现象,一般做法是在正常的梯度项后额外增加一项,以对较大的参数值作出惩罚。最简单的罚函数是2函数(M/2)>∑,W,即所有权重参数的平方和的1/2乘上一个正则化系数入入在RBM中又称为权损失( weight-cost)。重要的是,惩罚项关于权重参数的梯度必须乘上学习率,否则.学习率的改变将导致优化的目标函数也发生改变。在RBM中,若使用L2罚函数,贝权损失系数的取值可以取介于001与0.0001之间的任意值。值得指出的是,权衰减策略只需应用于连接权重参数W上,可见层和隐层偏置不需使用,因为它们不人可能导致过拟合。并且在某些情况下,偏置的值还必须较大才行隐单元个数如果我们关心的主要目标是避免过拟合而不是计算复杂度,则可以先估算一下用个好的模型描述一个数据所需的比特数,月其乘上训练集容量。基于所得的数,选择比其低个数量级的值作为隐元个数。如果训练数据是高度冗氽的(比如数据集容量非常大),则可以使用更少些的隐元。以上讨论的是RBM中的一些常用的参数设置,针对一个实际问题,应使用什么类型的可见单元和隐单元,在其中如何加入稀疏性使得隐单元只在少数情况下处于激活状态等问题的讨论,可参见文[23,31]山国科技论文在线4RBM的评估算法对于一个已经学习得到或正在学习中的RBM,应通过何种指标评价其优劣呢?显然,最简单的指标就是该RBM在训练数据上的似然度C()=∑1logP(v(()。但是,C(0)的计算涉及到归一化常数(),而这个值是无法通过数学方法直接解析得到的,但我们又不可能枚举RBM的所有状态。因此,只能采用近似方法对RBM进行评估。4.1重构误差所谓“重构误差”( reconstruction error),就是以训练数据作为初始状态,根据RBM的分布进行一次 Gibbs采样后所获样本与原数据的差异(一般用一范数或二范数来评估)Error=0初始化误差for all y(),t∈{1,2,…,T}do%对每个训练样本y(进行以下计算h N P(v()%对隐层采样ⅴ~P(h%对可见层采样Error=Eror+‖v-v)‖%累计当前误差end forreturn上mOP%返回总误差算法2.重构误差的计算.重构误差能够在一定程度上反映RBM对训练数据的似然度,不过并不完全可靠[23。但总的来说,重构误差的计算十分简单,因此在实践中非常有用。4.2退火式重要性采样退火式重要性采样”( Annealed Importance Sampling,AIS)图2是目前比较主流的RBM评估方法。它的想法非常直接,就是利用蒙特卡岁方法估计RBM对数据的似然度。只不过没有使用MCMC,而是通过一种叫做“重要性采样”( Importance Sampling)[20的算法进行逼近。这种算法的优点在于:当目标分布十分陡峭时,不直接对其进行采样,而是引入另一个简单的分布,在这个简单的分布上采样。然后,利用采样所获样本和两个分布之间的关系对原分布上的均值进行估算。“重要性抽样”的基本思想如下:假设我们要计算某个分布P4(x)的归一化常数ZA,那么,我们可以引入另一个状态空间相同,但更容易采样的分布PB(x),并且事先知道它的归化常数zB。这时,只要能计算出zA/zB的值,我们就可以算出原分布的归一化常数ZA。假
    2020-12-04下载
    积分:1
  • 用verilog写的sigma-delta adc例子
    用verilog编写的sigma-delta adc例子 应用在计量类adc产品
    2020-12-12下载
    积分:1
  • 博途(TIA)内部培训资料.pdf
    博途(TIA)内部培训资料 很详细的培训资料  适合没有基础的学习
    2020-01-14下载
    积分:1
  • OFDM信号功率谱密度
    OFDM信号功率谱密度的仿真代码,里面包括OFDM系统的频谱仿真和功率谱密度仿真
    2021-05-06下载
    积分:1
  • 696532资源总数
  • 103709会员总数
  • 38今日下载