登录
首页 » Others » Labview 呼吸灯 跑马灯 例子

Labview 呼吸灯 跑马灯 例子

于 2020-12-01 发布
0 289
下载积分: 1 下载次数: 1

代码说明:

在Labview中实现了呼吸灯及跑马灯,供同学们参考。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 基于stm32的门禁系统
    stm32控制RFID射频卡,GSM模块的门禁系统(1)界面显示用户号、密码输入界面;(2)当用户输入用户名、密码正确,开锁。用户密码错误用户名或密码错误;(3)连续输入错误3次,报警;(4)管理员具有添加用户,修改密码的功能;(5)具有短信验证解锁的功能;
    2020-07-02下载
    积分:1
  • 报刊订阅管理系统(数据库).
    包含源代码,报刊订阅系统详细说明,还有详细设计步骤,适合做课设
    2020-12-01下载
    积分:1
  • WHU-RS19 武汉大学深度学习数据集
    Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remo 所用数据源WHU-RS Dataset.从Google Earth(Google Inc.)收集的WHU-RS数据集[6]是一个新的公开可用的数据集,其包含大小为600×600像素的950幅图像,均匀分布在19个场景类中。一些示例图像如图5所示。我们可以看到,一些类别中的照明,尺度,分辨率和viewpoint-dependent外观的变化使得它比UCM数据集更复杂。
    2021-05-06下载
    积分:1
  • Alamouti空时分组码及运行结果.rar
    Alamouti空时分组编码及运行结果,是研究Alamouti方案比较合适的matlab代码
    2020-12-12下载
    积分:1
  • matlab 流形学习算法 降维算法 LLE Isomap
    【实例简介】matlab 流形学习算法 降维算法 LLE Isomap 等算法代码
    2021-11-16 00:42:44下载
    积分:1
  • HTML转PDF 非常好用
    用Aspose.Pdf来实现HTML转PDF
    2020-12-07下载
    积分:1
  • 最新标准PSO算法 带实例 告诉你使用方法
    为使用PSO提供了具体的事例,并详细说明怎样使用该Matlab编写的PSO算法,对一般的问题有借鉴功能。里面包含3个.m文件一个.doc文件,.doc文件讲授PSO算法的基本原理,并且采用实例讲解,.m文件为PSO算法实现的代码,详细用法已在word文档有说明,希望对你们有用。
    2020-06-26下载
    积分:1
  • ID3算法 matlab代码实现
    对于决策树来说,主要有两种算法:ID3算法和C4.5算法,本资源实现的是决策树分类算法中的ID3算法,利用matlab编程实现
    2020-12-11下载
    积分:1
  • TEF6686 完整驱动源码
    【实例简介】基於KEIL C開發環境開發 LPC17系列的晶片開發 NXP TEF6686完整驅動代碼。 包括RDS(Radio Data System)功能的調諧器。
    2021-11-18 00:52:01下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载