模式识别——基于ID3算法的三次改进
ID3算法是决策树的鼻祖,最早于1986年由Quinlan提出,全称是Iterative Dichotomiser 3 [1]。在这篇课程报告中,我将对经典的ID3做出三次改进:1.把 info gain 改进为 gain ratio;2. 把简单投票的过程改进为朴素贝叶斯的方法;3. 将许多颗ID3决策树打造成随机森林。本人将在Weka平台进行二次开发,并且用Weka-Experiment做大量实验,和其它著名的算法进行比较,最后做出综述。项目的源代码开源在本人的GitHub主页上。未来工作有以下几点:是那么容易就可以随机出来的1.在 Improvement Two中,3树的生长的深度限3.可以把这三种改进方法糅合在一起,看看三种制在多少,可以进行进一步的研究改进组合在一起,能不能产生性能更加的算法2.在 Improvement Three中,本人费劲心思写出来4.上述所有方法都是基于属性为 nominal的数据的“随机森林”,正确率反而比D3更差。虽然集,可以进一步研究属性为 numerical,甚至是很使我伤心,但是我在写代码、调试代码、还有两者混合的数据集。思考的过程中有了不少长进。看来随机森林不L己ta3et(1 caitao.I(2) caita (3 caita (4 caita (5) trees (6)treesca置,色va1 eatlon(100)B9.19|81.36*92.85V78.日9*94.43W93.40Vweather. symbolic100)79.00|56.507s.0079.57.506,50{v!/*)|(0/1/1)(1/1/0(011/1)(1/1/0)(1/1/0Re1)caia。,工3"-26936786470963225612) CaILE。 gainRatio.工D311-2693678647096322561(3 caitao naiveBayes. ID3-26936786470963225614)cata0 andomforest,ID31-2593678647096322561{5) trees. NBTree"-47160057070582560866) trees. Randomforest"-10-4-51- depth101-2260823972777004705图-7: Weka-experiment实验结果。总共6个算法,2个数据集。6个算法中(1是原始的1D3算法,后面(2)-(4)是本人的改进算法,(5)和(6)是Weka平台自带的算法。GitHub较风趣;另一方面,蒋老师在我上机实习的过程过,本次模式识别上机实刁的代码,全部公开在本人的回答了我不少疑惑,虽然这些疑惑对于蔣老师而言GitHub主页上面,ur地址如下:可能十分幼稚,但是依然完整解决了我的问题。1. Improvement one:https://github.com/caitaozhan/id3improvements/treREFERENCES/gain ratio2. Improvement TwoJhttps://en.wikipedia.org/wiki/id3algorithmhttps://github.com/caitaozhan/id3_improvements/tre[2]决策树,蒋良孝的PPTChapter2-8e/naive bayes[3] Data Mining Practica/ Machine Learning Tools and3. Improvement threTechniques--Chapter4.3https://github.com/caitaozhan/id3improvements/tre[4贝叶斯分类,将良孝的PPTChapter3-15e/random forest[5]http://archive.ics.uci.edu/ml/datasets/car+evaluation[6]https://en.wikipediaorg/wiki/random_subspace_methodAcknowledgements感谢蒋良孝老师对于我的指导。一方面,蒋老师上课讲解十分到位,关键部位一点就通了,不仅如此还比
- 2020-12-07下载
- 积分:1
Introduction.to.Stochastic.Processes.with.R
An introduction to stochastic processes through the use of RIntroduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The uINTRODUCTIONTO STOCHASTICPROCESSES WITH RINTRODUCTIONTO STOCHASTICPROCESSES WITH RROBERT P DOBROWWILEYCopyright o 2016 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley Sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA,(978)750-8400, fax978)750-4470,oronthewebatwww.copyright.comRequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionsLimit of liability/ Disclaimer of warranty While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limited tospecial, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic formats. For more information about Wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging-in-Publication Data:Dobrow. Robert p. authorIntroduction to stochastic processes with r/ Robert P. Dobrowpages cmIncludes bibliographical references and indexISBN978-1-118-74065-1( cloth)1. Stochastic processes. 2. R( Computer program language)I. TitleQC20.7.S8D6320165192′302855133-dc232015032706Set in 10/12pt, Times-Roman by SPi Global, Chennai, IndiaPrinted in the united states of america1098765432112016To my familyCONTENTSPrefaceAcknowledgmentsList of Symbols and Notationabout the companion Website1 Introduction and review1.1 Deterministic and stochastic models. 11. 2 What is a Stochastic Process? 61. 3 Monte Carlo Simulation. 91.4 Conditional Probability, 101. 5 Conditional Expectation, 18Exercises. 342 Markov Chains: First Steps402.1 Introduction. 402.2 Markov Chain Cornucopia, 422.3 Basic Computations, 522. 4 Long-Term behavior-the Numerical evidence, 592.5 Simulation. 652.6 Mathematical Induction*. 68Exercises. 70CONTENTS3 Markov Chains for the long term763.1 Limiting Distrib763.2 Stationary Distribution, 803.3 Can you find the way to state a? 943.4 Irreducible markov Chains. 1033.5 Periodicity, 1063.6 Ergodic Markov Chains, 1093.7 Time Reversibility, 1143.8 Absorbing Chains, 1199 Regeneration and the strong markov property 1333.10 Proofs of limit Theorems*, 135Exercises. 1444 Branching processes1584.1 Introduction. 1584.2 Mean Generation Size. 1604.3 Probability Generating Functions, 1644.4 Extinction is Forever. 168Exercises. 1755 Markov Chain Monte Carlo1815.1 Introduction. 1815.2 Metropolis-Hastings Algorithm, 1875.3 Gibbs Sampler, 1975.4 Perfect Sampling*, 20.55.5 Rate of Convergence: the Eigenvalue Connection*, 2105.6 Card Shuffing and Total Variation Distance. 212Exercises. 2196 Poisson process2236.1 Introduction. 2236.2 Arrival. Interarrival Times. 2276.3 Infinitesimal Probabilities. 2346.4 Thinning, Superposition, 2386.5 Uniform Distribution. 2436.6 Spatial Poisson Process, 2496.7 Nonhomogeneous Poisson Process. 2536.8 Parting Paradox, 255Exercises. 2587 Continuous- Time markov Chains2657.1 Introduction. 265
- 2020-12-10下载
- 积分:1