基于LMS 算法的多麦克风降噪
武汉理工大学 信息处理课设 基于LMS 算法的多麦克风降噪 给定主麦克风录制的受噪声污染的语音信号和参考麦克风录制的噪声,实现语音增强的目标,得到清晰的语音信号。2007控制科学与工程全国博士生学术论坛2007年8月其中日为语音信号与麦克风阵列所在平面的夹角,d为麦克风间距,c为声音传播速度,f为信号采样率。固定波束形成器通过延时求和单元产生参考语音信号y(n),y(n)与y(m)分别代表期望语音信号与噪声信号。y,(n)4x(m)=y(m)+y/(m(3)信号通过阻塞矩阵产生噪声参考信号用来估计波束形成输出信号中的噪声成分。选取B使其中任意行向量之和为零,即任意行向量线性无关。为了进一步降低噪声参考信号中的语音泄漏,参考文献“提出了用自适应阻塞矩阵替代固定阻塞矩阵的方法。ynly2nMM-[nJ]=BLun], u2n],umn自适应噪声抵消器ANC通过对输入噪声参考信号进行自适应滤波处理抵消了参考信号y,(m)中的噪声成分,得到增强的语音信号。em]=y[m-∑nnl3LMS自适应算法及改进31LMS自适应算法GSC架构中的自适应噪声抵消器ANC需要用增强的语音信号作为反馈对滤波器权值进行自适应更新。很多自适应算法基于LMS及其改进形式, Clark提出的块LMS算法使得滤波器的自适应逐块更新而非传统LMS滤波器逐点更新4, HOSHUYAMA、 Kellermann分别提出的基于范数约束自适应算法的权值更新,以及频域无约束实现。这些算法基本结构如图2所示y(n-1)(n-L+1)wo(ne(ny/(n)图2自适应横向滤波器结构图图2为图1中的M-1路L阶多通道自适应噪声对消器中某一路的展开形式,其抽头输入向量为[ym]yn-]yn-L+1],对应的抽头权向量为wmwn]w-]。LMS算法的梯度向量通过G2007控制科学与工程全国博士生学术论坛2007年8月计算抽头输入相关矩阵R和抽头输入与期望响应间互相关向量p得到VJ(n)=-2p+2Rv(m),将R和p的瞬态估计R(n)=y(m)y"(n),p(n)=y(n)y/(m)代入,得出梯度向量的瞬态估计:VJ(n)=-2y(n)y, (n+2y(n)y"(n)w(n)进而推出LMS算法权值更新公式为w(n+1)=w(n)+uy(n)Ly(n)-y"(n)w(n)32基于稳态噪声的自适应算法改进考查图2中具有L个抽头权值的LMS算法,抽头权值与抽头输入一一对应。在传统的逐点更新LMS算法中,每计算一个输出需要L次乘法,而更新一次抽头权值也需要L次乘法,故每次迭代需要2L次乘法。对于L个输出样值,所需要的乘法次数为2次。针对传统LMS算法复杂度高的缺点,Ca利用离散傅立叶变换在频域完成滤波器系数的自适应提出了快速块LMS箅法, Ann Spriet在此基础上通过改进LMS算法中的步长矩阵进一步降低了算法复杂度以上LMS算法改进均在图2的横向滤波器架构下进行,即抽头权值与抽头输入一一对应。考虑到稳态噪声的特点,本文提出了“一对多”的滤波器抽头权值更新算法,即L个输入样值共享一个滤波器权值。如此M路多麦克风语音增强系统中的ANC滤波器权值便由(M-1)×L维矩阵W[n=[w[η],n2[rl…wM-[r],其中H[n]=[won],w1[nw-r]退化为(M-1)×1维向量n]=[wryw2n],M-m]j。改进算法权值更新公式为w(n+D)=w(n)+uBu(nu"(n)[A-Bw(n)其中B为阻塞矩阵,A为固定波束形成器,为步长,U(n)为LxM维输入信号。与传统的“一对一”LMS滤波器相比,“一对多”结构在降低算法复杂度的同时,牺牲了前者具有的时间域严格对齐的特性。为降低这一缺点对系统降噪性能的影响,应在频域进行噪声对消,改进算法的多麦克风语音增强系统结构如图3所示。e(n)(n)B Yn图3改进的噪声消除算法结构图3中用虚线框表示可选滤波器权值w。由于实际应用中语音泄漏的存在,在参考语音信号中加入v能有效补偿由语音泄漏引起的语音崎变⑩。实际应用中由于阻塞矩阵输出不可避免的存在语音泄4642007控制科学与工程全国博士生学术论坛2007年8月漏,为了避免期望信号的消除,箅法中加入语音活动检测单元89,当前帧为噪声时更新滤波器系数,当前帧为语音信号时,滤波器系数不变33算法复杂度比较表1列出了本文算法与其他几种噪声消除算法之间算法复杂度的比较。我们采用实数乘法运算次数作为衡量算法复杂度的标准,每个N点傅立叶变换或其反变换需要Mlog2N次实数乘法运算。传统逐点LMS算法在时间域逐点更新滤波器权值。快速块LMS算法与多通道 Wiener算法通过FFT快速循环卷积特性实现LMS中的线性卷积运算,从而降低算法复杂度。本文算法在此基础上通过改进滤波器抽头权值更新算法进一步降低运算复杂度。由表1可见,当麦克风数目M4,L=32时,本文算法与多通道 Wiener滤波算法相比,R(3M+2)FT+8ML+2M63M+2)+4M2+6M_172(M+2)FFT+2ML6(M+2)+M40°文算法运算量降低了4倍左右。表1算法复杂度比较算法名称算法复杂度传统逐点LMS算法2ML快速块LMS算法(41(3M+2)FFT+16ML多通道 Wiener滤波算法53M+2)FFT+8M2+12M本文提出的算法(M+2)FF+2M…图4a)麦克风采集到的原始信号b)采用快速块LMS算法处理后的信号[4]c)采用多通道 Wiener滤波算法[10处理后的信号d采用本文算法处理后的信号4实验结果与分析实验采用线性排列的4个间距为4厘米的麦克风组成的语音采集系统,采样率为44KHZ,说话人位于阵列的正前方,噪声为稳态噪声,其与麦克风阵列法线所夹角度为50度。图4比较了麦克风采集到的信号、采用本文算法处理后的语音信号以及采用其他主流语音增强算法处理后的语音信号的时域波形。由4652007控制科学与工程全国博士生学术论坛2007年8月图4可见采用本文算法处理的语音信号背景噪声有明显降低。为进一步分析各种语音增强算法消噪能力,分别按照公式9计算各算法输出信号的信噪比,其中k代表帧序列号,N代表噪声,Y代表输出语音信号,L为帧长。∑(Y(k,2)2-|N(k,)SNRou(E)=10 log,o∑1MV6)图5釆用各箅法输出信号信噪比与输入信号信噪比之差来衡量噪声降低程度。由图5看出,在本文算法基础上在参考通道中加入可选滤波器权值能够进一步消除背景噪声,提高输出信噪比。苯文鲜法(使用权值w)木文好法未使用权值y块LMS算法Frame Number图5信噪比增强对比5结论本文在稳态噪声的前提下,提出了一种基于广义旁瓣消除器架构具有低算法复杂度的噪声消除算法,该算法通过改进LMS滤波器权值更新算法来达到降低算法复杂度的目的。实验结果证明,在稳态噪声环境下,该方法降噪性能优于传统LMS算法,同时有效降低了传统算法的算法复杂度。在现实生活中一些存在稳态噪声的场合,如发动机舱、厂房等该算法具有很强的实用价值。参考文献[U]LJ. Griffiths and C. W. Jim []. "An altemative approach to linearly constrained adaptive beamforming, IEEE Trans. AntennasProcess., voL. AP-30, no. I, pp 27-34, Jan. 1982.[2]0. Hoshuyama, A Sugiyama, and A Hirano [J]. "A robust adaptive beamformer for microphone arrays with a blocking matrixusing constrained adaptive filters, "IEEE Trans. Signal Process. vol 47, pp. 2677-2683, Oct. 1999[3]W. Herbordt and W Kellermann [J]. " Frequency-domain integration of acoustic echo cancellation and a generalized sidelobecanceller with improved robustness, "Eur. Trans. Telecommun., voL. 13, no 2, pp 123-132, Mar. -Apr. 2002.[4]Clark. G.A., S K Mitra, and S.R. Parker [J]. Block implementation of adaptive digital filters, "IEEE Trans. Circuits Syst,voL. CAS-28,PP584-592.1981.[5]Ann Spriet, Jan Wouters, Simon Doclo, Marc Moonen, "Frequency-Domain Criterion for the Speech Distortion WeightedMultichannel Wiener Filter for Robust Noise Reduction", Ap: //ftp. esat kuleuven. ac, be/pub/SISTA/doclo/reports/04-240 pdf[6JH. Buchner, J. Benesty, W. Kellermann J]. Generalized multichannel frequencydomain adaptive filtering: efficient realizationand application to hands free speech communication", Signal Processing 85(3), PP 549-570. 2005[7]W.Herbordt and W. Kellermann [A]. " Efficient Frequency-domain realization of robust generalized sidelobe cancellers", IEEE4662007控制科学与工程全国博士生学术论坛2007年8月Fourth workshop, multimedia signal Processing, PP. 377-382 2001[8]S. Van Gerven, F. Xie [J. "A Comparative Study of Speech Detection Methods", Proc. EUROSPEECH, VoL 3, Rhodos, Greecepp.1095-1098.1997[9]J Sohn, N.S.Kim, W Sung [] A Statistical Model-Based Voice Activity Detection", IEEE Signal Processing Lett. 6(1)1-31999[10]A Spriet, M. Moonen, J Wouters[]. Robustness Analysis of Multi-channel wiener Filtering and generalized sidelobeCancellation for Multi-microphone Noise Reduction in Hearing Aid Applications", IEEE Trans. Speech and Audio Processing, 13(4)PP.487-503.2005[IlJFerrara, E R r [] Fast implementation of LMS adaptive filters", IEEE Trans. Acoust. Speech Signal Process,voL.ASSP-28pp474-475.1980[12]S. Doclo and M. Moonen[J]. " Multi-microphone noise reduction using recursive GSVD-based optimal filtering with ANCpostprocessing stage, "IEEE Trans. Speech Audio Process., vol. 13, no. 1,Pp 53-69, Jan. 2005[13]Philipos C Loizou [J]. "Speech Enhancement Based on Perceptually Motivated Bayesian Estimators of the MagnitudeSpectrum" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL 13, NO 5, Pp.857-869, 2005种新的基于稳态噪声的噪声消除算法旧WANFANG DATA文献链接作者:董鹏宇,朱子元,林涛作者单位:同济大学超大规模集成电路研究所,上海20009本文链接http://d.g.wanfangdata.comcn/confereNce6584700.aspx
- 2020-11-28下载
- 积分:1
MIKE21教程
不错的MIKE21中文教程,主要介绍MIKE21水动力模块方面的内容Www.Zlvo.Com42.7风场( Wind forcing)···;;;·36注意:42.8冰盖( ce coverage)4.2.9引潮势( Tidal potential)42.10降水-蒸发( Precipitation- Evaporation)….4142.1波浪辐射应力( Wave radiation)424212源( Sources4342.13水工结构物( Structures)454.2.14初始条件( nitial conditions)42.15边界条件( Boundary conditions)6142.16温度/盐度模块(Tcmpcraturc/Salinity Module)6742.17湍流模块( Turbulence module)42.8解耜( Decoupling)….…6742.9输出( Outputs)…特别说明:本手册部分内容来源于网络。Www.Zlvo.Com第一章模型介绍11简介MIKE21是一个专业的工程软件包,用于模拟河流、湖泊、河口、海湾、海岸及海洋的水流、波浪、泥沙及环境。MIKE21为工程应用、海岸管理及规划提供了完备、有效的设计环境。高级图形川户界面与高效的计算引擎的结合使得MIKE2I在世界范围内成为了一个水流模拟专业技术人员不可缺少的工具。丹麦水力研究所开发的平面二维数学模型MIKE21,曾经在丹麦、埃及、澳洲、泰国及中国香港、台湾等国家和地区得到成功应用,在丬面二维白由表面流数值模拟方面具有强大的功能。目前该软件在中国的应用发展很快,并在一些大型工程中广泛应用,如:长江口综合治理工程、杭州湾数值模拟、南水北调工程、重庆市城市排污评价、太湖富营养模型、香港新机场工程建设等。12MIKE21软件特点(1)用户界面友好,属于集成的 Windows图形界面;(2)具有强大的前、后攵理功能。在前处理方面,能根据地形瓷料进行计算网格的划分;在后处理方面具有强大的分析功能,如流场动态演示及动画制作、计算断面流量、实测与计算过程的验证、不同方案的比较等;(3)多种计算网格、模块及许可选择确俫用户根据自身需求来选择模型(4)可以进行热启动,当用户因各种原因需暂时中断MIKE21模型时,只要在上次计算时设置了热启动文件,再次开始计算时将热启动文件调入便可继续计算,极大地方便了计算时间有限制的用户;(5)能进行干、湿节点和干、湿单元的设置,能较方便地进行滩地水流的模拟:(6)具有功能强大的卡片设置功能,可以进行多种控制性结构的设置,如桥墩、堰、闸、涵洞等(7)可广泛地应用于二维水力学现象的研究,潮汐、水流,风暴潮,传热、盐流,水质,波浪紊动,湖震,防浪堤布置,船运,泥沙侵蚀、输移和沉积等,Www.Zlvo.Com被推荐为河流、湖泊、河∏和海岸水流的二维仿真模拟工具。1.3水动力模块原理131控制方程模型是基于三向不可压缩和 Reynolds值均布的 Navier-SLokes方程,并服从于 Boussinesq假定和静水压力的假定。二维非恒定浅水方程组为Ch Chu chvhSChu ahauvan h6x+=1-a=欧h-a(1-22pa ax po po ph)+-(h12)+hu,Schv chuy chvfuh-ghan h apay po aygh ap2 Po ay Po po po、ax11)+hS式中:t为时间:x,y为笛卡尔坐标系坐标;n为水位;d为静止水深;h=n+d为总水深;tn,v分别为x,y方向上的速度分量;f是哥氏力系数,f=2 osin p,(为地球白转角速度,为当地纬度;g为重力加速度;p为水的密度;Sx、SS分别为辐射应力分量;S为源项;(uy,ν)为源项水流流速。字母上带横杠的是平均值。例如,矿、ν为沿水深平均的流速,由以下公式定义hu= udz, hvdzWww.Zlvo.Com为水平粘滞应力项,包括粘性力、紊流应力和水平对流,这些量是根据沿水深平均的速度梯度用涡流粘性方程得出的:T=2A2A13,2数值解法)空间离散计算区域的空间离散是用有限体积法( Finite volume method),将该连续统体细分为不重叠的单元,单元可以是任意形状的多边形,但在这里只考虑三角形和四边形单元。在MKE软件2007版本只能是三角形网格。浅水方程组的通用形式一般可以写成上(U)=S(U)(1-6)式中:U为守恒型物理向量:F为通量向量;S为源项在笛卡尔坐标系中,二维浅水方程组可以写为OU O(F-F)O(FY-Fy)S(1-7)式中:上标/和分别为无粘性的和粘性的通量。各项分别如下:0hCu+g(FhuyOu Cha0Fk=lhAolhugh42Www.Zlvo.Comadh2thPu cy Pogn+fuhpe gn opythiPo oy Po对方程(46)第i个单元积分,并运用 Gauss原理重写可得出「a(Fa)-JA(1-9)式中:A1为单元g2的面积;I;为单元的边界;ds为沿着边界的积分变量这里使用单太求积法来计算面积的积分,该求积点位于单元的质点,同时使用中点求积法水计算边界积分,方程(49)可以写为∑FnAT=S(1-10)式中:U和S分别为第个单元的U和S的平均值,并位于单元中心;NS是单元的边界数;^厂,为第j个单元的长度阶解法和二阶解法都可以用于空间离散求解。对于二维的情况,近似的Riemann解法可以用来计算单元界面的对流流动。使用Roc方法时,界面左边的和右边的相关变量需要估计取值。二阶方法中,空间准確度可以通过使用线性梯度重构的技术来获得。而平均梯度可以用由 jawahar和 Kamath于2000年提出的方法来估计,为了避免数值振荡,模型使用了二阶TVD格式。(2)时间积分考虑方程的一般形式aU=G(U)1-11)对于二维模拟,浅水方程的求解有两种方法:一种是低阶方法,另一种是高阶方法。低价方法即低阶显式的Euer方法Un1=Un+△G(Un)(1-12)式中:为时间步长。高阶的方法为以如下形式的使用了二阶的 Runge kuttaWww.Zlvo.Com方法n12=Un+△G(U,)Un+1=Un+△G(Un+12)(1-13)(3)边界条件1)闭合边界沿着闭合边界(陆地边界),所有垂直于边界流动的变量必须为0。对于动量方程,可以得知沿着陆地边界是完全平稳的。2)开边界开边界条件可以指定为流量过程或者是水位过程3)千湿边界处理动边界问题(T湿边界)的方法是基于赵棣华(1994)和 Sleigh(1998)的处理方式。当深度较小时,该问题可以被重新表述,通过将动量通量设置为零以及只考恳质量通量来实现。只有当深度足够小时,计算不考虑该网格屮元。每个单元的水深会被监测,并且单元会被定义为干、半干湿和湿。单元面也会被监测,以确定淹没边界。满足下面两个条件单元边界被定义为淹没边界:首先单元的一边水深必须小于hn,且另一边水深必须大于h;第二,水深小于hn的单元的静水深加上另一单元表面高程水位必须大于零。满足下亩两个条件单元会被定义为干单元:首先单元中的水深必须小于干水深hn;另外,该单元的三个边界中没有一个是淹没边界。被定义为干的单元在计算中会被忽略不计。单儿破定义为半干:如果单元水深介于h和hm之间,或是当水深小于hy但有一个边界是淹没边界。此时动量通量被设定为0,只有质量通量会被计算。单元会被定义为湿:如果单元水深大于ha。此时动量通量和质量通量都会在计算中被考虑。如果模型中的区域是处在τ湿边交替区,为了避免模型计算岀现不稳定性,使用者可以启用 Flood and Dry选项。在这个情形下使用者必须设定一个干水深Www.Zlvo.Com( drying depth),淹没深度( flooding water depth)和湿水深( wetting depth)者必须满足hn
- 2020-12-09下载
- 积分:1