登录
首页 » Others » 图像分割评价函数

图像分割评价函数

于 2020-12-03 发布
0 237
下载积分: 1 下载次数: 5

代码说明:

输入图像分割结果和标答,得到评价指标P,R,F。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 遨博六自由度机械臂使用手册
    遨博六自由度机械臂的厂家配套用户使用手册,内含机械臂工作原理和示教器使用教程。遨博(北京)智能科技有限公司AUBO(Beijing Robotics Technology Co, LtdAUBO Robotics用户手册此版本用户手册对应产品版本信息请见本手册版本信息章节,使用前请仔细核对实际产品版本信息,确保一致。AUBO用户手册会定期进行检查和修正,更新后的内容将出现在新版本中。本手册中的内容或信息如有变更,恕不另行通知。遨博(北京)智能科技有限公司对木手册中可能岀现的任何错误概不负责。遨博(北京)智能科技有限公司对因使用本手册及其中所述产品而引起的意外或间接伤害概不负责安装、使用户宀品前,请阅读本手册请保管好本于册,以便可以随时阅读和参考本说明书图片仅供参考,请以收到的实物为准Copyright c2015-2018AUB0保留所有权利本资料为遨博(北京〕智能科技有限公司专有之财产,非经书面许可,不准透露或使用本资料,亦不准复印、复制或转变为任何其他形式使用。AUBO目录前言产品组成更多信息第章安全1.1简介1.2交全警示标志1.3安全注意事项1.3.1概述1.3.2使用须知13.3人员安全1.4责任及规范1.5危险识别16预定用途1.7紧急情况处理17.1紧急停止装冒1.7,2从紧急状态恢复17.3强制关节的紧急移动1.7.4机械臂过大力安全保护第章搬运及注意事项第章维护维修及废弃处置3.,1维护维修3.2废弃处置第章质量保证4.1产品质量保证4.2免责声明第章机器人硬件组成第章机器人安装6.1简要安装步骤6.2重要安全说明6.3机器人工作空间63.1机器人机械尺寸6.3.2机器人运动范围6.4安装机器人保留所有权利。目录内测版AUBO64.1底座6.4.2安装机器人本体6.5安装末端工具6.5.1木端法兰机械结构尺寸第章使用入门7.1安装7.1.1安装机器人71.2电缆连接72机器人上电72.1上电前准备7.2.2系统上电7.3机器人关机第章系列标准控制柜8.1简介8.2电气警告和小心事项83系列标准控制柜电气接8.3.1简介83.2安全8.32.1默认安全配置8.3,2.2外部紧急停止输入8.32.3防护停止输入83.24缩减模式输入8.3,2.5防护重置输入8.3.2.6三态开关输入8.3.27操作模式输入8.3.2.8拖动示教使能输入83.29系统停止输入8.3,2.10系统紧急停止输出8.32.11机器人运动输出8.32.12机器人未停止输出8.3.2.13缩减模式输出83.2.14非缩减模式输出83,2.15系统错误输出8.3.3控制柜内部83.4通用输入输出电气接口83.5工具木端接口83.6通信接口84使用入门84.1安全84.2使用前注意事项8.4.3控制柜面板介绍目录内测版)保留所有权利。AUBO84.4手动模式和联动模式844.1手动模式8442联动模式844.3示教器使能开关第章示教器简介9,1打廾小教器电源9.2关闭示教器第章示教器操作界面10.1坐标系10.1.1基坐标系()10.1.2末端坐标系(10.2初始界面10.3机器人小教面板10.3.1软件关闭按钮10.3.2面板选择10.3.3机器人仿真界面10.3.4机器人仿真切换按钮10.3.5步进控制10.3.6位置控制10.3.7机器人实时状态参数显示10.3.8姿态控制10.39关节轴控制10.3.10零位姿态、初始位姿10.3.11运动速度04设置面板104.1控制器设置10.4,2用户设置104.3工其端设置10.5外设设备10.6安装设置面板10.6.1初始位姿标定10.6.2工具标定10.62.1工具运动学标定106.2.2工具动力学标定10.6.23工具标定10.6.3坐标系标定10.6.4安全设置10.7机器人系统设置10.7.语言设置10.7.2时间设冒10.7.3网络设置保留所有权利。目录内测版AUBO10.7.4密码设置10.7.5锁屏时间设置10.7.6刷新10.8状态日志面板10.9版本信息第章在线编程111简介11.2工程11.2.1新建工程112.2加载工程11.2.3保存工程11.2.4默认工程11.2.5白动移动和手动移动11.2.6过程11.3条件选项卡11.3.1命令11.3.2命令11.3.3命令11.34If.lse命令11.3.5命令113.6命令11.3.7命令11.3.8命令l1.3.9命令11.3.10命令11.3.11命令l1.3.12命令11.3.13命令11.3.14命令113.15命令11.3.16命令11.3.17命令11.3.18命令11.3.19命令114外设命令11.5记录轨迹11.6变量配置117定时器11.8仿真模型11.9脚本文件配置目录内测版)保留所有权利。AUBO附录术语认证与检测停止时间和停止距离参照标准技术规格有效负载机械臂安装要求报警信息及常规问题说明保留所有权利。目录内测版AUBO目录内测版)保留所有权利。
    2021-05-07下载
    积分:1
  • 基于Xilinx FPGA的OFDM通信系统基带设计(光盘)
    基于Xilinx FPGA的OFDM通信系统基带设计(光盘),原代码。做通信的必备
    2020-12-03下载
    积分:1
  • 线性判别分析matlab代码及pdf 讲解
    这是线性判别分析的一个matlab code,有具体实例的运行结果,还有关于LDA 算法的详细讲解,通俗易懂,希望对大家有用.
    2020-11-28下载
    积分:1
  • UCI经典分类二分类数据集
    UCI经典分类二分类数据集,机器学习算法测试。亲测可用。
    2021-05-06下载
    积分:1
  • STM32自制鼠标
    【实例简介】利用STM32作为从机,利用USB线与电脑相连,运行程序,可以动过控制电路中接的遥感开关,移动电脑光标,达到鼠标的目的
    2021-11-08 00:36:10下载
    积分:1
  • simulink/stateflow 入门教
    simulink/stateflow 入门教程,相信介绍了stateflow的功能和基本操作,并且有简单易懂的例子,有助于快速入门。
    2020-06-01下载
    积分:1
  • Oracle Linux 6.5 服务器 安装 Oracle 11.2.0.4 数据库
    Oracle Linux 6.5 服务器 安装 Oracle 11.2.0.4 数据库
    2020-12-01下载
    积分:1
  • yolo算法MATLAB
    yolo算法移植成matlab,权值文件需要自己下载(在官网),然后转成txt读取,主函数是detect_and_draw4,自己写的第一个代码,比较粗糙,但又懒得改哈哈,如果有优化的建议就私信我呀
    2020-12-12下载
    积分:1
  • 基于51单片机的全自动洗衣机设计(带Protues仿真)
    基于51单片机的全自动洗衣机设计(带Protues仿真)。对于51单片机的课程设计和学习51单片机,学习Protues是个好资料。
    2021-05-06下载
    积分:1
  • 基于LMS 算法的多麦克风降噪
    武汉理工大学 信息处理课设 基于LMS 算法的多麦克风降噪 给定主麦克风录制的受噪声污染的语音信号和参考麦克风录制的噪声,实现语音增强的目标,得到清晰的语音信号。2007控制科学与工程全国博士生学术论坛2007年8月其中日为语音信号与麦克风阵列所在平面的夹角,d为麦克风间距,c为声音传播速度,f为信号采样率。固定波束形成器通过延时求和单元产生参考语音信号y(n),y(n)与y(m)分别代表期望语音信号与噪声信号。y,(n)4x(m)=y(m)+y/(m(3)信号通过阻塞矩阵产生噪声参考信号用来估计波束形成输出信号中的噪声成分。选取B使其中任意行向量之和为零,即任意行向量线性无关。为了进一步降低噪声参考信号中的语音泄漏,参考文献“提出了用自适应阻塞矩阵替代固定阻塞矩阵的方法。ynly2nMM-[nJ]=BLun], u2n],umn自适应噪声抵消器ANC通过对输入噪声参考信号进行自适应滤波处理抵消了参考信号y,(m)中的噪声成分,得到增强的语音信号。em]=y[m-∑nnl3LMS自适应算法及改进31LMS自适应算法GSC架构中的自适应噪声抵消器ANC需要用增强的语音信号作为反馈对滤波器权值进行自适应更新。很多自适应算法基于LMS及其改进形式, Clark提出的块LMS算法使得滤波器的自适应逐块更新而非传统LMS滤波器逐点更新4, HOSHUYAMA、 Kellermann分别提出的基于范数约束自适应算法的权值更新,以及频域无约束实现。这些算法基本结构如图2所示y(n-1)(n-L+1)wo(ne(ny/(n)图2自适应横向滤波器结构图图2为图1中的M-1路L阶多通道自适应噪声对消器中某一路的展开形式,其抽头输入向量为[ym]yn-]yn-L+1],对应的抽头权向量为wmwn]w-]。LMS算法的梯度向量通过G2007控制科学与工程全国博士生学术论坛2007年8月计算抽头输入相关矩阵R和抽头输入与期望响应间互相关向量p得到VJ(n)=-2p+2Rv(m),将R和p的瞬态估计R(n)=y(m)y"(n),p(n)=y(n)y/(m)代入,得出梯度向量的瞬态估计:VJ(n)=-2y(n)y, (n+2y(n)y"(n)w(n)进而推出LMS算法权值更新公式为w(n+1)=w(n)+uy(n)Ly(n)-y"(n)w(n)32基于稳态噪声的自适应算法改进考查图2中具有L个抽头权值的LMS算法,抽头权值与抽头输入一一对应。在传统的逐点更新LMS算法中,每计算一个输出需要L次乘法,而更新一次抽头权值也需要L次乘法,故每次迭代需要2L次乘法。对于L个输出样值,所需要的乘法次数为2次。针对传统LMS算法复杂度高的缺点,Ca利用离散傅立叶变换在频域完成滤波器系数的自适应提出了快速块LMS箅法, Ann Spriet在此基础上通过改进LMS算法中的步长矩阵进一步降低了算法复杂度以上LMS算法改进均在图2的横向滤波器架构下进行,即抽头权值与抽头输入一一对应。考虑到稳态噪声的特点,本文提出了“一对多”的滤波器抽头权值更新算法,即L个输入样值共享一个滤波器权值。如此M路多麦克风语音增强系统中的ANC滤波器权值便由(M-1)×L维矩阵W[n=[w[η],n2[rl…wM-[r],其中H[n]=[won],w1[nw-r]退化为(M-1)×1维向量n]=[wryw2n],M-m]j。改进算法权值更新公式为w(n+D)=w(n)+uBu(nu"(n)[A-Bw(n)其中B为阻塞矩阵,A为固定波束形成器,为步长,U(n)为LxM维输入信号。与传统的“一对一”LMS滤波器相比,“一对多”结构在降低算法复杂度的同时,牺牲了前者具有的时间域严格对齐的特性。为降低这一缺点对系统降噪性能的影响,应在频域进行噪声对消,改进算法的多麦克风语音增强系统结构如图3所示。e(n)(n)B Yn图3改进的噪声消除算法结构图3中用虚线框表示可选滤波器权值w。由于实际应用中语音泄漏的存在,在参考语音信号中加入v能有效补偿由语音泄漏引起的语音崎变⑩。实际应用中由于阻塞矩阵输出不可避免的存在语音泄4642007控制科学与工程全国博士生学术论坛2007年8月漏,为了避免期望信号的消除,箅法中加入语音活动检测单元89,当前帧为噪声时更新滤波器系数,当前帧为语音信号时,滤波器系数不变33算法复杂度比较表1列出了本文算法与其他几种噪声消除算法之间算法复杂度的比较。我们采用实数乘法运算次数作为衡量算法复杂度的标准,每个N点傅立叶变换或其反变换需要Mlog2N次实数乘法运算。传统逐点LMS算法在时间域逐点更新滤波器权值。快速块LMS算法与多通道 Wiener算法通过FFT快速循环卷积特性实现LMS中的线性卷积运算,从而降低算法复杂度。本文算法在此基础上通过改进滤波器抽头权值更新算法进一步降低运算复杂度。由表1可见,当麦克风数目M4,L=32时,本文算法与多通道 Wiener滤波算法相比,R(3M+2)FT+8ML+2M63M+2)+4M2+6M_172(M+2)FFT+2ML6(M+2)+M40°文算法运算量降低了4倍左右。表1算法复杂度比较算法名称算法复杂度传统逐点LMS算法2ML快速块LMS算法(41(3M+2)FFT+16ML多通道 Wiener滤波算法53M+2)FFT+8M2+12M本文提出的算法(M+2)FF+2M…图4a)麦克风采集到的原始信号b)采用快速块LMS算法处理后的信号[4]c)采用多通道 Wiener滤波算法[10处理后的信号d采用本文算法处理后的信号4实验结果与分析实验采用线性排列的4个间距为4厘米的麦克风组成的语音采集系统,采样率为44KHZ,说话人位于阵列的正前方,噪声为稳态噪声,其与麦克风阵列法线所夹角度为50度。图4比较了麦克风采集到的信号、采用本文算法处理后的语音信号以及采用其他主流语音增强算法处理后的语音信号的时域波形。由4652007控制科学与工程全国博士生学术论坛2007年8月图4可见采用本文算法处理的语音信号背景噪声有明显降低。为进一步分析各种语音增强算法消噪能力,分别按照公式9计算各算法输出信号的信噪比,其中k代表帧序列号,N代表噪声,Y代表输出语音信号,L为帧长。∑(Y(k,2)2-|N(k,)SNRou(E)=10 log,o∑1MV6)图5釆用各箅法输出信号信噪比与输入信号信噪比之差来衡量噪声降低程度。由图5看出,在本文算法基础上在参考通道中加入可选滤波器权值能够进一步消除背景噪声,提高输出信噪比。苯文鲜法(使用权值w)木文好法未使用权值y块LMS算法Frame Number图5信噪比增强对比5结论本文在稳态噪声的前提下,提出了一种基于广义旁瓣消除器架构具有低算法复杂度的噪声消除算法,该算法通过改进LMS滤波器权值更新算法来达到降低算法复杂度的目的。实验结果证明,在稳态噪声环境下,该方法降噪性能优于传统LMS算法,同时有效降低了传统算法的算法复杂度。在现实生活中一些存在稳态噪声的场合,如发动机舱、厂房等该算法具有很强的实用价值。参考文献[U]LJ. Griffiths and C. W. Jim []. "An altemative approach to linearly constrained adaptive beamforming, IEEE Trans. AntennasProcess., voL. AP-30, no. I, pp 27-34, Jan. 1982.[2]0. Hoshuyama, A Sugiyama, and A Hirano [J]. "A robust adaptive beamformer for microphone arrays with a blocking matrixusing constrained adaptive filters, "IEEE Trans. Signal Process. vol 47, pp. 2677-2683, Oct. 1999[3]W. Herbordt and W Kellermann [J]. " Frequency-domain integration of acoustic echo cancellation and a generalized sidelobecanceller with improved robustness, "Eur. Trans. Telecommun., voL. 13, no 2, pp 123-132, Mar. -Apr. 2002.[4]Clark. G.A., S K Mitra, and S.R. Parker [J]. Block implementation of adaptive digital filters, "IEEE Trans. Circuits Syst,voL. CAS-28,PP584-592.1981.[5]Ann Spriet, Jan Wouters, Simon Doclo, Marc Moonen, "Frequency-Domain Criterion for the Speech Distortion WeightedMultichannel Wiener Filter for Robust Noise Reduction", Ap: //ftp. esat kuleuven. ac, be/pub/SISTA/doclo/reports/04-240 pdf[6JH. Buchner, J. Benesty, W. Kellermann J]. Generalized multichannel frequencydomain adaptive filtering: efficient realizationand application to hands free speech communication", Signal Processing 85(3), PP 549-570. 2005[7]W.Herbordt and W. Kellermann [A]. " Efficient Frequency-domain realization of robust generalized sidelobe cancellers", IEEE4662007控制科学与工程全国博士生学术论坛2007年8月Fourth workshop, multimedia signal Processing, PP. 377-382 2001[8]S. Van Gerven, F. Xie [J. "A Comparative Study of Speech Detection Methods", Proc. EUROSPEECH, VoL 3, Rhodos, Greecepp.1095-1098.1997[9]J Sohn, N.S.Kim, W Sung [] A Statistical Model-Based Voice Activity Detection", IEEE Signal Processing Lett. 6(1)1-31999[10]A Spriet, M. Moonen, J Wouters[]. Robustness Analysis of Multi-channel wiener Filtering and generalized sidelobeCancellation for Multi-microphone Noise Reduction in Hearing Aid Applications", IEEE Trans. Speech and Audio Processing, 13(4)PP.487-503.2005[IlJFerrara, E R r [] Fast implementation of LMS adaptive filters", IEEE Trans. Acoust. Speech Signal Process,voL.ASSP-28pp474-475.1980[12]S. Doclo and M. Moonen[J]. " Multi-microphone noise reduction using recursive GSVD-based optimal filtering with ANCpostprocessing stage, "IEEE Trans. Speech Audio Process., vol. 13, no. 1,Pp 53-69, Jan. 2005[13]Philipos C Loizou [J]. "Speech Enhancement Based on Perceptually Motivated Bayesian Estimators of the MagnitudeSpectrum" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL 13, NO 5, Pp.857-869, 2005种新的基于稳态噪声的噪声消除算法旧WANFANG DATA文献链接作者:董鹏宇,朱子元,林涛作者单位:同济大学超大规模集成电路研究所,上海20009本文链接http://d.g.wanfangdata.comcn/confereNce6584700.aspx
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载