登录
首页 » Others » js 特效 html 特效 行走的小人

js 特效 html 特效 行走的小人

于 2020-12-04 发布
0 134
下载积分: 1 下载次数: 1

代码说明:

js 特效 html 特效 行走的小人js 特效 html 特效 行走的小人

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于MATLAB/simulink的异步电机矢量控制系统仿真模型
    异步电机转子磁场定向的矢量控制仿真模型,磁链观测选用电压模型法。稳态与动态特性还不错。MATLAB版本:R2014a
    2021-05-07下载
    积分:1
  • CLIPS 监测诊断Demo
    我积分不够啊,下不了资源啊,有木有!!!分享一个非常简单的基于CLIPS的状态监测和故障诊断系统,可以作为入门CLIPS的Demo,已入门的或高手就不用看了。
    2020-11-29下载
    积分:1
  • ad元件库文件
    ad超强元件库,包含常用的元件原理图,开关元器件,封装文件,省心又好
    2020-12-02下载
    积分:1
  • arcgis测试的mxd文件
    mxd文件
    2020-11-05下载
    积分:1
  • 网络系统集成项目投标书
    本论文包括网络工程投标书范本并阐述了撰写投标书的过程中应该注意的问题,也详细讲解了投标书的格式,标书范本做的比较规范,确实有参考意义,对从事或学习网络系统集成工作的人很有帮助
    2020-07-04下载
    积分:1
  • 电容传感器pcap01数据读取及发送
    主控芯片为STM32F103,通过SPI总线对电容传感器PCAP01寄存器的读写,设置传感器的刷新频率和精度等参数,然后将读取的电容数据通过485传输出去。
    2020-11-28下载
    积分:1
  • vb&access采购系统
    vb access 采购系统单机版,编辑已通过,具有权限维护,商品信息维护,用户信息维护,供应商信息维护,采购单申请,采购单审查,采购单采购,入库,库存信息管理查询等功能
    2020-11-04下载
    积分:1
  • PICMG 3.0 Revision 3.0 AdvancedTCA Base Specification
    两个月前从picmg官方网站上下的,最近再去,找不到免费的了,开始收费了。希望对想学习或研究的兄弟姐妹们有所帮助。PICMG 3.0 Revision 3.0 AdvancedTCA Base Specification February 19, 2008先进电信运算架构(ATCA)又被称为PICMG3.X,是用于满足高吞吐量、高可靠性的新一代计算机平台标准,该标准将为电信行业制定全新的刀片式产品和机箱外形技术提供规范。目前,ATCA正由PCI工业计算机制造商协会(PICMG)进行开发,协会致力于满足CompactPC(PICMG2.16)I及其他专有解决方案都不能满足的新一代通信应用中
    2020-12-03下载
    积分:1
  • C均值聚类法,MATLAB
    采用C均值聚类算法对男女生样本数据中的身高、体重2个特征进行聚类分析,考察不同的类别初始值以及类别数对聚类结果的影响,并以友好的方式图示化结果。
    2020-12-05下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载