登录
首页 » Others » SIFT算法及全景拼接测试用图(含牛津大学提供的测试图)

SIFT算法及全景拼接测试用图(含牛津大学提供的测试图)

于 2020-12-05 发布
0 209
下载积分: 1 下载次数: 1

代码说明:

SIFT算法及全景拼接测试用图(含牛津大学提供的测试图)bark-zoom+rotate,bikes-blur,boat-zoom+rotategraf-affine,leuven-light,trees-blur,ubc-compress,wall-affine

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 光伏电池阵列输出特性研究用simulink模型
    光伏电池阵列输出特性研究用simulink模型,运行即可输出P-V,I-V曲线,请使用2010b以上版本打开
    2021-05-06下载
    积分:1
  • 《测量平差序设计》(宋力杰著)光盘
    本光盘是国防工业出版社2009年1月出版的《测量平差程序设计》(宋力杰编著)(ISBN978-7-118-06057-7)一书中的源程序,每个文件夹中的源程序与书中各章内容对应。运行环境: 1.操作系统最好在WindowsXP下 ; 2.Microsoft Visual C++6.0以上版本(包含6.0)。
    2020-11-30下载
    积分:1
  • LCD驱动开发,型号ILI9340,内附原代码,规格书.rar
    【实例简介】LCD驱动开发,型号ILI9325,内附原代码,规格书
    2021-11-20 00:33:15下载
    积分:1
  • 齿轮工具库CREO /UG/等三维建模软件齿轮工具库
    PROE CREO/UG齿轮库,可直接修改参数,在绘图区域打开文件后,修改参数可以得到各种齿轮。直齿 锥齿   人字齿
    2019-12-25下载
    积分:1
  • simulink锁相环仿真
    关于matlab simulink 锁相环的仿真,有详细demo和仿真原理图以及各种例子
    2020-11-28下载
    积分:1
  • 语音信号处理中基频提取算法综述
    语音信号处理中基频提取算法综述,论述了各种基频检测的算法,对比分析各方法与思想,不错的总结增刊张杰等:语音信号处理中基频提取算法综述101信号是由频率具有谐波关系的信号组成的,因此有的一个改进是采用多分辩率方法。该方法的思想是:很多尝试利用频域信息提取基频的方法如果一个特定算法在特定分辨率下的准确性是可疑21基于滤波器的算法的,那么采用更高或者更低的分辨率,可以进一步21.1最佳梳状滤波器法判断前面的基频估计是否可信。如果在全部或人部最仹梳状滤波器法閃是具有高鲁棒性但计算代分的分辨率下求得相同的基频,那么该频率值就可价很大的算法。一个梳状滤波器有很多等距离分布以作为最终的基频估计结果。当然,在带来好处的的通带,在最佳梳状滤波器算法中,通带的位置都同时,该方法也会带来计算量上的代价,因为针对是由第一个迸带决定的,即通带的中心频率都是第每个分辨率都需要重新计算频谱,这也是为什么一个通带中心频率的整数倍。输入信号通过多个与多分辨率的傳里叶分析比专门的多分辨率变换(如第一个通带中心频率不同的梳状滤波器。如果输入离散小波变換)要慢的原因信号是由一组频率成谐波关系的信号组成的,那么2.4离散小波变换法滤波器的输出在全部谐波成分都通过滤波器时达到离散小波变换是一个强大的工具,它允许在连最大。但是如果信号只有一个基频成分,该方法就续的尺度上把信号分解为高频成分和低频成分,它会失效,因为会有很多个梳状滤波器能让信号通过。是时间和频率的局部变换,能有效地从信号中提取不过,语音信号的频率具有谐波结构,所以可采用信息。与快速傅里叶变换相比,离散小波变换的主该方法提取基频。要好处在于,在髙频部分它可以取得好的时间分辨2.1.2可调的IR滤波器率,在低频部分可以取得好的频率分辨率。文献四提出了一种基于中心频率可调节的带通3统计的方法IR滤波器提取棊频的方法,随着用户的调节,滤波器的中心频率扫过整个频域。当输入信号的一个强在某种意义上,基频提取的问题可以被看作是的频率成分在通带沱围内时,滤波器会输出最大值,个统计问题。每一个输入帧都被划分给一组类中信号的基频就可以用此时滤波器的中心频率来估的一个,代表信号的基频估计。所以很多研究者计。文献[9提到,对于可调的I滤波器,有经验的直试图将现代的统计方法应用于基频提取问题用户能够识别只有一个谐波结构的信号的输出和包Boris和 Xavier发表了一系列使用最人似然法估含多个基频信号的输出的差异计基频的方法。他们的模型如卜:观察集是语音信2.2倒谱分析法号分帧后做短时傅里叶变换的结果,每一个观察都倒谱分析是谱分析的一种方法,翰出是傅里叶被看作是基频激励产生的信号与其他剩余信息(包变换的幅度谱取对数后做傅里叶逆变换的结果。该括非谐波部分和噪声)两部分的混合。该模型是由方法所依据的理论是,一个具有基频的信号的傅立般的语音信号产生的模型的简单化得到的,假没叶变换的幅度谱有一些等距离分布的峰值,代表信个语音包括在基频及其整数倍点的值处较大的谐波号中的谐波结构,当对幅度谱取对数之后,这些峰成分,以及在非谐波处和噪声处的很小的值。对于值被削弱到一个可用的范围。幅度谱取对数后得到一组候选的基频值,该方法计算每一个观察可能是的结果是在频域的一个周期信号,而这个频域信号由某一个基频产生的概率,并将概率最大的基频值的周期(是频率值)可以认为就是原始信号的基频,所作为最终的估计值。所以候选的基频值的选择是很以对这个信号做傅里叶逆变换就可以在原始信号的重要的,因为从理论上讲,观察可能对应着任意的基音周期处得到一个峰值基频值。另妒,如果对信号的傅里叶变换的嘔度谱取对数后的结果直接进行分析,而不是雨接着做傅里叶4算法的改进逆变换,就是谐波成分谱的方法。进一步,如果在前面提到的每种算法都有自己的改进方法,下求频域的变换时不使用傅里叶变换,而使用能使频面介绍两种对以上大部分算法均适用的改进方法。谱更加精细的Chip变换,就是基」Chi变换的提取41人的听觉模型基频的方法,该方法具有高分辨率和高鲁棒性。由于基频提取本身就是听觉感知问题,所以所23多分辨率的方法有的算法都可通过加入人耳的听觉模型提扃性能对于任何基于傅里叶分析的频域方法都可以做人耳的听觉模型将人的听觉系统对声音信号的处理102电子科技大学学报第39卷分为分析、传递和还原3个阶段。分析阶段主要考虑5经典的基频检测方法耳蜗的分频效应,耳蜗的外端对高频敏感,内端对低频敏感,可以用一组中心频率不同的带通滤波器自从有了语音信号分析饼究这门学科以来,基来模拟。传递阶段声波振动沿基膜传播,并在听觉频的检测一直是一个重点研究的课题。经典的基频神经纤维内产生电流,最终传入听觉中枢。还原阶检测方法可以大致分为3类,如表1所示段听觉系统提取语音中诸如音质、音调、时域和位表1经典的基音检测方法以及特点置等信息。分类基因检测方法特点在声学中,声强是指单位时间内通过垂直」声由多种简单的波形峂值泼传播方向的单位面积的声波能量,用表示。当声并行处理法检沏器提取基音周期波的频率在20~20000Hz(可闻频率)之间,而声强波形根据各种理沦探作,从波形中去行计法数据减少法达到一定的强度(听阈),就能被人耳感知。前人大量掉修正基音以外的数的实验测试结果表明,人耳对不同频率的声波感受讨零率法利用波形的讨零率,差眼于重复图形到相同响度时的声强是不同的。人耳对两端频段的利用语音波形的自相关函数提取自相关法声波反应较为迟钝,而对中间频段的声波反应相对基音,采用中心削波平坦欠理频谱,及其改进较为敏感采用峰值削波可以简化运算对于任意的频域方法,简单的改进是用Q值恒语音波形降低采样率斤,进行IPC分析相关定的谱变换方法代替傅里叶变换。恒的变换方法SIFT法用逆滤波器平坦处理频谱,通过预测误差处埋法计算代价更人,但更接近于人的听觉感知系统。的自相关函数恢复时间精度在决定是否使用人的听觉模型吋必须考虑两个采用平均幅度差函数(AMDF检测周期AMDF法性,也可以根据残差信号的因素:(1)基频提取的用途。如果应用的目的很简单,AMDF法行提取要求也不是太高,那么人的听觉感知因素也许不是倒谱法根据对数功率谱的傅立叶反变换很必要。(2)计算的复杂度。使用人的听觉感知模型分离频谱包络和微细结构会使计算复杂度大大增加,如果原来算法的复杂度变换法在频谱上求出基频高次谐波成分的直方已经很大,再加入人的听觉感知模型可能会使算法循环直方图法图,根据高次谐波的公约数决定某音的复杂度过高4.2基频的跟踪(1)波形估计法。直接由语音波形估计、分析波另一种对基频提取的改进是基频跟踪。前面提形上的周期峰值到的基频提取都是在个单独的时间窗内进行的。(2)相关处珄法。时域中周期信号最明显的特征人的听觉系统是能够眼踪输入信号的基频的。一个是波形的类似性,因而可以道过比较原始信号和它只包含有限个基音周期的时间窗内的基频是很难提位移后的信号之间的相似性确定基音周期。该类方取的。但是,如果输入是连续的语音信号,相当于法抗波形的相位失真能力强,且馍件处理结构简单。很多时间窗个接个输入,基频的提取反而变得3)变换法。将语音信号变換至频域或倒谱域估很容易。研究发现,语音信号的基频具有连续性,计基音周期即前后两帧的基频是连续的,不出现跳变。一帧内6总结的基频提取常见的问题是得到的佔计值是正确值的本文列出了若干基频提取的主要方法,对它们整数倍或者整数倍分之一。针对该问题,利用语音分别进行了简单的介绍,并讨论了对算法的改进。信号基频的连续性,可对基频提取算法做一个简单需要注意的是,所介绍的方法都是针对一个语音信的改进:在计算某一恢的基频时对于它前血一帧的号而言的,对于混合的语音信号的基频提取,如果基频附近的值给予更大的可能性,即一唢语音信号可以先将混合的语音信号分离丌,那么基频提取就中基频的值不可能出现崁变的情况。这就是简单的会变待很简单。同样地,在一些基于时频分析的语基频跟踪思想,并且不会在计算上增加任何复杂度。音分离算法中,如果知道了各个语音的基频,那么另外一种比较复杂的基频跟踪方法是使用隐马语吝分离也就变得很容易解决了。尔科大模型。(下转第126页)126电子科技大学学报第39卷L9 GONG L, NEEDIIAM R, YAIIALOM R Reasoning about1990 IEEE Symposium on Research in Security and privacybelief in cryptographic protocols C]/Proceedings of the Los Alamitos, CA: IEEE Computer Society Press, 1990编辑税红(上接第102页)参考文献[5 BENJAMiN K. Spectral analysis and discrimination by[ DELLER了R, PROAKIS了 G HANSEN J H Lzero-crossings[C]Proceedings of the Institute of ElectricalDiscrete-time processing of speech signals [M]. New York:and Electronics Engineers. S 1.: [ s.n. 1986: 1477-1493[6] CURTIS R. The computer music tutorial]. CambridgeMaxell McMillan. 1993MIT Press. 1996[2 FORT A, ISMAELLI A, MANFREDI C, et al. Parametric[7] DE CHEVEIGNE A, YIN H K. A fundamental frequencyd non-parametric estimation ofapplication to infant cry[]. Med Eng Phys, 1996, 18(8estimator for speech and music[J]. Journal of the AcousticalSociety of America, 2002,11(4):1917-1930[3] PARSONS T. Voice and speech processing[M]. New York[8 EARGLE J M. Music, sound and technology M. TorontoHill,1986.Van Nostrand reinhold. 19954 RABINERR L, SCIIAFERR W. Digital processing ofspeech signals. Englewood Cliffs M]. New Jersey: Prentice编辑税红Hll,1978
    2020-12-05下载
    积分:1
  • matlab仿真6自由度puma机器人
    matlab仿真6自由度puma机器人,包括源码,动画实现等内容。
    2020-12-01下载
    积分:1
  • fastica的matlab实现
    本代码用matlab进行编程,可以实现fastica算法,非常简单易懂
    2020-12-09下载
    积分:1
  • 基于Xgboost的商业销售预测
    基于Xgboost的商业销售预测,以德国Rossmann商场的数据为例,通过对数据的探索性分析,以相关背景业务知识体系为基础,通过可视化分析,提取隐含在数据里的特征,使用性能较优的Xgboost方法进行规则挖掘,取得较好效果。第3期饶泓等:基于 Boost的商业销售预测277·(3)eta:收缩步长,即学习速率,取值范围是,3.1数据来源默认为0.3。在更新叶子节点的时候,权重乘以本文所有数据均来自 Haggle中的 Rossmanneta,以避免在更新过程中的过拟合。商店销售额数据集。 Rossmann是商人 Dirk ross(4) max _ depth:每棵树的最大深度,取值范围mann创立的德国首家平价日用品商店,现在的是,默认为6。树越深,越容易过拟合。Rossmann公司逼布欧洲7个国家,分店达100多(5) subsample:训练的实例样本占整体实例样家。论文通过位于德国的1115所 Rossmann连锁本的比例取值范围是(0.1],默认为1。值为0.5商店的历史数据预测未来48天商店的销售额时意味着 Boost随机抽取一半的数据实例来生成Haggle给出了三个数据集: train、test、 store,分树模型,这样能防止过拟合别是训练集测试集和商店基本信息的数据集,对训(6) colsample bytree:在构建每棵树时,列(特练集建模训练,对测试集进行预测。征)的子样本比,参数值的范围是(0,1]数据集基本信息如下(7) objective:默认为reg: linear;(1)训练集 train.csv:时间范围为2013年01月(8)sccd:随机数种子,为确保数据的可重现01日到2015年07月31日,共942天,1017209条性,默认为0。数据。2.2K折交叉验证方法(K一CV(2)测试集test.csv:时间范围为2015年08月论文采用K折交叉验证方法。将原始数据0日到2015年09月17日,共48天,41088条数分为K个子集,每个子集分别验证一次,剩余的K据组子集作为训练数据,这样可得到K组训练集(3)商店基本信息数据集 store.csv:1115条数和测试集以最终的分类平均精度作为性能指标。据,共1115家商店的信息。在实际应用中,K值一般大于或等于2,需要建立K3.2数据的可视化分析及原始特征提取个模型来进行K折交叉验证的实验,并计算K次为了获取影响销售额的基本数据特征,论文对测试集的平均辨识率Gaggle提供的 Rossmann数据集进行了可视化分K折交叉验证的结果能较好说明模型效果,有析,提取原始特征集。效地避免欠拟合与过拟合。在 Boost中,通过(1)顾客数和销售额之间的关系xgb.cv函数来做交叉验证。从图1中可以看出,顾客数和销售额之间存在2.3独热编码(One- hot encoding紧密的正相关关系。由于 Boost仅适用于处理数值型向量,因此处理训练集和测试集时需要将所有其它形式的数10.0据转换为数值型向量,本文采用独热编码将特征值转专换为数值。50独热编码也称一位有效编码,即对于任意时间任意给定的状态,状态向量中只有一位为1,其余6各位为0,将n类特征值转化成n位二进制数串,将顾客数特征的每个对应类设置为1。独热编码将每一个特图1顾客数与销售额的关系曲线征的个取值通过独热编码后转换成了n个二元特(2)促销对销售的影响的可视化分析征,通过该方法将特征转变成稀疏矩阵6。独热编图2和图3中 Promo取1表示当天有促销活码能够解决分类器不好处理属性数据的问题并在动取0表示没有促销活动。从图中可以看出促销一定程度上扩充了特征活动对顾客数并没有太大影响,但销售量却明显提3数据预处理高了,即促销活动并没有吸引更多的顾客,但提高了顾客的购买力,从而提高了销售额。通过查询原始为了获取数据中的有效特征,论文采用探索性数据发现没有促销的情况下顾客平均消费8.94欧数据分析方法对数据进行可视化分析获得数据分元,有促销活动的情况下平均消费10.18欧元布特征,理解原始数据的基本特征,发现数据之间的(3)星期( DayOf Week)对销售影响的可视化分潜在模式.找出数据中的有效特征析21994-2017ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net278南昌大学学报(理科版)2017年40000表2商店薮据基本特征集30000特征名称含义值批20000ore商店号取值:1到1115商店类型10000商店类别分类:逢础类met最近的党争对手的距薮卷:桊商店0离里有761个商店有PromoCompetition-图2促销对销售额的影响Open SinceMonth竞争对手开张的月份月份Open since year竞争对手开张的年份年份数据6000P持续性的促销活动0:无,1:有的4000Prom2 Since Week开始参加Pomo2促销日历上的第几周数的日历周值2000Pomo2 Sincerer开始参加Pm2i年份数据PromoPromoInterval参加Pomn2促销开始Jan,Apr,Jo)e的月份列表Feb, May, Aug, Nov".图3促销对顾客数的影响Mar, Jun, Sept, Dec从图中可以看出,星期日的销售额中位数和上不同的分类特征在训练集和测试集中的比例见四分位数远远高出正常营业日,但是下四分位数却表3~6低于正常营业日,即有些商店星期日营业额高于平表3Open特征取值比例时,但也有一部分商店的销售额低于正常营业日。从图中也可以看出,从周一到周六,周一的销售额偏16.99高一些,星期六的销售额偏低一些test/yo14.5585,4440000表4Prom特征取值比例30000Pramo0凝train61.8538,15批2000test/%50.4239.5810000表5 Stateholiday特征取值比例y星期几1.990.660.40图4销售额在星期1~7中的分布情况test/%99.560.44由于篇幅的关系,对数据的可视化分析不表6 Schoolholiday特征取值比例列岀。根据这些数据的可视化化析,我们提取出如Schoclholiday表1所示和表2所示的训练数据和测试数据原始特test/%55.6544.35征集以及商店数据基本特征集。表1数据原始特征集3.3数据预处理持征名称含义3.3.1数据清洗为获得可训练用数据,我们对原tcre有店号取值:1到1115始数据进行清洗,具体过程如下:DayOfWeek星期几取值:1到7(1)标记异常数据。如商店是开门的,但是销Date时间如2013-01-01Sales销售额数值售额为零的数据为异常数据Customers顾客数数值(2)对训练集的 Sales销售额字段取对数,设置是否开店关店,1:开店为 Saleslog字段;P当天是否有促销0:无促销,1:促销0:非假日,a:公共假日;b:(3)缺失值用一1填充;State Holiday假日复活节,c:圣诞节(4)合并训练集和测试集,添加Set字段,用以SchoclHoliday学校假日0非假日,1:假日分训练集和测试集,值1为训练集,0为测试集;(3)数值化分类特征值。原始数据集中, State21994-2017ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net第3期饶泓等:基于 Boost的商业销售预测holiday分类特征取值为0、a、b、c,无法代入模型计算因此重新编码为0、1、2、3; Store Type分类特4实验结果及分析值为a、b、c、d, Assortment分类特征值为a、b、c,采4.1实验条件用同样方法用整型数据重新编码(1)软件环境(6)分解特征。将原始数据集中Date特征分(a)操作系统: Windows7x64解为 DatcDay、 Datc Wcck、 DatcMonth、 Datc ycar(b)开发平台: Python2.7+R3.4.2DateDay OfYear5个特征(c)第三方库: Python: numpy+ pandas+(7)增加字段 PateNt,即Date转换为整型的 atplotlib I xgboost;R3.4.2库: data table|gg形式lot2tlubridate-zoo-dplyr+scales+xgboost+(8)规范化特征表达。对 Competition- forecast glmnetpen sinceRer和 CompetitionOpenSinceMonth字(2)硬件环境段合并成普通年月的表达,并转化为整型;将Pro处理器:Iner(R)Core(TM)i3-4160CPUcmoZsincc ycar和 Promo2 Since wcck字段合并成普3.60GHz通年月的表达,并转化为整型,增加字段内存:8GBPromo2 SinccInt4.2单 Boost模型()删除偏差大于2.5的异常数据。对特征工程后的所有特征用 Boost模型进行(10)删除存在异常的数据点,如图5所示的异训练,参数如表7所示。常数据。表7单 Boost模型参数25000参数值参数值15000thread500M4M小人Activereg: linear subsamplegrounds20000colsample bytearly stop. round250004.3组合模型0%时你以根据模型的作用将模型分为三类:商店模式模型、数据合并模型、混合模型。商店模式模型:下面采用单个模型是对每个商图5异常数据店进行单独拟合。这类模型关注商店各自的特性,3.3.2特征处理论文根据相关信息背景对数据但是它也错过了可在其他相似商店的模式中获取的进行特征处理:信息(1)增加字段 Competition OpenInt(1)线性模型lm拟合趋势,不带特征交互的(2)添加一些额外的特征,如商店的位置特征 Boost模型拟合残差StoreState发薪日效应特征 PayDay(在一个月的第(2)线性模型lm拟合趋势,带特征交互的Ⅹg个工作日设置特征值为3在随后的两天设置为 boost模型拟合残差2、1)(3)线性模型lm拟合趋势,不同参数值的(3)增加商店平均每天的销售额 Sales PerDay、 glmnet模型拟合残差平均每天的顾客数 CustomersPerDay、平均每天每(4)tslm模型拟合趋势丨季节性,Ⅹ gboost模位顾客的销售额 SalesPerCustomers Per Day作为新型拟合残差。的特征。(5)tslm模型拟合趋势十季节性, glmnet模型(4)增加特征组合,如: store; DayofWeek,拟合残差store: Dayofweek: Promo等等。(6)tslm模型拟合趋势十季节性,Ⅹ gboost模型+ gemnet模型拟合残差。(7)每个商店直接用Ⅹ gboost模型拟合残差。21994-2017ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net·280·南昌大学学报(理科版)2017年这些模型中,含有 Boost模型的模型参数设1.5- A. train-rmspe- B. train-rmspe置如表8,其中模型7中参数 rounds值设为500。1.0-A.validation-rmspe-B validation表8组合 Boost的模型参数0.5参数值0150030004500600075009000参数值RMSPEreg: linear eta0.013C0max _ depth图6在训练集 train和验证集 validation上的 RMSPE值colsamplc bytrcc0.8subsample3.95图7给出了 Boost模型中非组合特征的重要数据合并模型:下列模型使用合并有 store数度得分,从图中可以看出时间类特征和有关竞争对据集和trai训练集的数据集。各个模型的参数设手的特征得分非常髙,这意味着这些特征对模型具置如表9-11有非常大的影响。表9没有特征工程的 Boost模型DateWeek参数参数CompetitionopenIntreg: lineareta0.01SalesperDayPromorounds3000max _depthcolsample bytreesubsampleAssortment 152100000020000003000000F score特征重要度表10有特征工程的 Boost模型图?特征重要度得分参数参数值bjectivereg: linear eta为了对比各模型的泛化效果,我们给出了单类模型(线性模型LM、时间序列线性模型TSLM、基4000subsoIl0.9于 Lasso和 Elastic net正则广义线性模型 glmnet、early stop. round100cclsample bytree极端梯度上升模型ⅹ gboost)和它们之间的组合模型在测试集上 RMSPE值,从而评价模型在测试集表11153个特征十特征交互的 Xgboost模型上的泛化能力。如表13所示参数值参数表13各模型 RMSPE值比较objectivereg: linear etaC.015max depth18模型RMSPE值.20657300CLM一简单的特征处理rounds. 1l.7TSLM+筒单的特征处理cCanvTree0.12751early stop. round100random forest-简单的特征处理glmnet+简单的特征工程3.11974组合模型:通过组合数据合并模型来获取跨多个商Boost十简单的特征工程0.11839店之间共同的特质。模型的残差用商店模式模型中Boost+特征工程Boost+ glmnet+特征工程0.11262的模型来拟合,从而获得每个商店的特质。用Igloos+ glmnet+tslm+lm+特征工程0.1114Gprcomp函数从数据中提取50个主成分,并用Xg从表中可以看出,Ⅹ ghost单模型的能力就优bost模型来拟合、计算残差。模型说明如下:于其它模型,在进行了简单特征工程后, Boost(1)使用线性模型lm拟合趋势,带特征交互的和 gemnet模型相比, Boost模型依然效果更好。glmnet模型+ Boost模型拟合残差,最后我们结合TSLM|LM在处理趋势和季节性上(2)使用tslm拟合趋势和季节性,带特征交互的优势,采用集成方法对 Xgboost+ glmnet进行组的 Boost模型拟合残差。合得出优化模型Ⅹ gboost+ glmnet+tslm+lm+特图6给出模型在训练集和验证集上的 RMSPE征工程, RMSPE值得到较大提升,泛化性能最优的变化过程,横坐标是次数,纵坐标是 RMSPE的值A是人工删除了异常点的数据中的异常数据5结论并没有删除。可以发现在训练集上训练的前500次本论文研究基于 Boost方法对实体零售业销RMSPE的值就迅速的降低到0.2,然后在1750次售额进行预测。论文以德国零售业 Rossmann公就在0.1左右了,可以看出在训练集上效果很好。司1115家实体门店的商场信息和销售数据为薮据21994-2017ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net第3期饶泓等:基于 Boost的商业销售预测281·源,采用 Boost方法对公司销售额进行预测。参考文献通过在特征工程中对原始数据进行特征提取、L1」赵啸彬.基于数据挖掘的零售业销售预测LD.上海:选择和构建,筛选岀用于训练的特征属性;对比Xα上海交通大学.2010boost、随机森林、 GLMNET以及IM、TSIM模型2 CHEN T,HET. Higgs Boson Discovery with boosted等不同方法对销售额的预测结果,表明 Xgboosτ方TreesLCI.JMLR: Workshop and Conference Proceed法无论是训练速度还是在 RMSPE评价标准上都具2015.42:6980有明显的优势。3 ROBERT E. Banfield, Lawrence (. Hall. Kevin WBowyer. W. P. Kegelmeyer, A Comparison of Decision为了进一步提高 Boost预测模型的精度和泛Tree Ensemble Creation Techniques LI]. IEEE Trans-化能力,本文通过大量的特征工程,尝试多种模型的actions on Pattcrn Analysis and machinc intelligence集成学习方法和参数调优,利用 GLMNET和Xg2007,29(1):173-180boost模型拟合残差,并结合IM、TSLM在趋势和[]李航.统计学习方法[M]北京:清华大学出版社,李节性预测的优点,获得组合优化模型。实验表明2012该组合模型在性能上优于单一 Boost预测模型。[5]闻玲·移动平均季节模型在商品销售收入预测中的应这种基于Xⅹ gboost的组合模型不仅适用于对德AJ. Market Modernization, 2010(28):43-45国零售业销售额的预测还可以将此方法应用于国6黄伟陶俊才.一种基于k- means聚类和关监督学习内零售实体业甚至电商平台的销售额预测,对于提的医学图像分割算法[J].南吕大学学报(理科版),2(14,33(1):31-35高商店的运营生产模式、日常管理、价格管理、配送[7 RICE J Mathematical Statics and Data Analysis[M]方式及精准营销具有重要的意义cand Edition, Plymouth: Duxbury Press, 2006: 221-21994-2017ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
    2021-05-06下载
    积分:1
  • XILINX7000系列PCB设计指南
    zynq-7000 pcb design guide.pdf
    2021-07-07 00:32:11下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载