登录
首页 » Others » Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)

Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)

于 2020-12-05 发布
0 124
下载积分: 1 下载次数: 1

代码说明:

在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matrix.h 和 Matrix.cpp(C++ 实现矩阵操作)
    实现了矩阵中的各种操作, 包括矩阵相加,相减,矩阵乘法,矩阵转秩,余子式,求行列式的值,求矩阵特征值,LU 分解,QR 分解,求现行方程组的解等等。 是任何做科学计算工作者必备的类库。此类库也是C++初学者极好的参考资料。类库的实现运用了运算符重载,友元,异常处理,文件输入输出,函数重载,指针,动态分配内存等一系列C++技术。此类库是我在美国研究生阶段的一个Term Project.品质保证。
    2020-12-01下载
    积分:1
  • 计算机专业 实习周记 实习报告
    包括一篇实习报告 和 15篇实习周记 计算机 软件的 php开发 原创啊 哈哈 可以拿去参考 改改
    2020-11-30下载
    积分:1
  • 学生选课管理系统(数据库课设计)
    学生选课管理系统 数据库课程设计目录第一章系统规划1.1引言..b垂1.1.1编写目的.1.1.2项目背景1.2可行性研究的前提1.2.1目枋1.2.2要求1.2.3条件假定和限制1.2.4决定可行性的主要因素1.3技术可行性分析3.1技术的支持能力.11122333333.2技术的优势.1.3.3技术的难点1.4经济可行性分析1.4.1预期支出1.4.2预期收益1.5社会可行性分析333444441.5.1法律因素.1.5.2用户使用可行性.1.6意见结论第二章需求分析2.1系统需求垂鲁垂垂垂2.2功能需求2.3数据流图..2.3.1系统顶层图2.3.2数据流程图一层分解图2.3.3数据流程图二层分解图2.4数据字典.2.4.⊥数据流条目2.4.2数据处理132.4.3数据存储.14第三章概念设计...153.1实体之间的联系153.2ER图153.2.1局部E-R图第四章逻辑设计..11概念模型向关系模型的转换194.1.11:N联系的转化的关系模式4.1.2M:N联系的转化的关系模式194.2概念模型的优化04.2.1确定范式级別04.2.2实施规范化处理20第五章物理设计.5.1数据库的存储结构.,225.1.2数据库的表设计225.1.3数据的存放位置的设计245.1.4关系模式的存取方法245.1.5.数据库安仝性.21第六章实现、运行与维护.256.1实现,,,256.1.1数据库的实现.256.1.2视图的实现256.2人机界面设计,事b··垂···,,,,,,,,276.2.1用户登陆界面276.2.2学生选课管理界面.276.2.3教师管理界面.286.2.4管理员管理界面.6.3系统测试296.3.1用户脊陆测试296.3.2学生选课管理测试,,,,,,,296.3.3教师管理测试306.3.4管理员管理测试、4运行维护....,32总结33参考文献34学生选课管理系统第一章系统规趔第一章系统规划1.1引言1.1.1编写目的可行性研究的日的是川最小的代价在尽可能的短的时间内确定数据库系统是否可能开发、是否值得开发、是否可以开发(在该报告中主要是考査《学生选课管理系统》是否可能开发、是否值得开发、是否可以开发)。其实质是在较高层次上以较抽象方式进行的、简化的压缩的需求分析和概要设计过程。1.1.2项目背景开发软件名称:学生选课管理系统项目任务提出者:李军项目开发者:洪峰、陈梓明等用户:各大高校师生1.2可行性研究的前提1.2.1目标系统实现后,极大的方便对学生进行选课和选课后临时班级的安排管理,学生选课信息的管理。避免在安排课程信息的滞后,减少信息交流的烦琐过程及其带来的丌销。促进髙校教育的计算机信息化进程,提髙学校的工作效率。对于系统的本身而言,应该具有较高的实用性、安全性。能够极大的满足学生选课,以及学校对选课信息的管理学生选课管理系统第一章系统规趔1.2.2要求主要功能:教师和学生登陆系统的帐号和密码,初始都分别为教师和学号,登陆后密码可以修改。其屮教师的职位可以是管理员。管理员和非管理员的老师及学生对系统的操作具有不同的权限。管理员登陆系统,对学生选课情况进行管理,包括发布选课信息,对学生的选课情况进行查看。管理员还可以对授课老师的信息进行增加、删除、修改、查询。教师脊陆系统,能査看自己的个人信息,及所授课的班级的所有学生的本门课程的成绩信息,并能进行增加和修改。学生登陆系统,能进行选课,查看管理员发布的选课信息,自己的选课情况,本人的基本信息,以及课程的成绩。系统自动分巸学生选课后的临时班级。性能要求管理员发布的信息、学生选课的信息以及管理员和学生对系统操作的信息必须及时的反映在本系统上,且无差错输入要求:具有很好的容错性和兼容性输出要求:应迅速、准确、实吋完成期限:预计五个星期,即截止2011年12月30日。1.2.3条件假定和限制建议软件寿命:未知经费来源:自费硬件条件: Intel pentium4、lG内存同等性能及以上的硬件条件运行环境: WindowⅪP、 Tomcat5.5、JDK1.6数据库: Microsoft sQL server2005投入运行最迟时间:2012年1月5日学生选课管理系统第一章系统规趔1.2.4决定可行性的主要因素技术可行,现有技术可完全承担开发任务操作可行,软件能被操作人员快速接受绎济可行,为小型系统软件,支出较小。社会可行,使用软件全部为正版,且本软件在法律允许范围之内1.3技术可行性分析技术上的可行性分析要考虑现有技术条件能否顺利完成开发工作及将来要采用的硬件和软件技术能否满足用户提出的要求。1.3.1技术的支持能力木系统采用J2EE企业级开发方案,其中 MyEclipse8.5作为系统前台应用程序丌发工具,采用 SQL Server2005工具建立数据库,并通过JDBC使两者进行连接从而进行系统软件开发。此前,我们已使用相同技术开发过类似软件系统,具有一定开发经验。此外,从开发人员的水平考虑,本系统的软件开发人员,都具有较强软件开发能力,且之前开发都参加过类似软件系统的开发,经验卡富。3.2技术的优势、J2EE体系结构提供中间层集成框架用来满足无需人多费用而又需要高可用性、高可靠性以及可扩展性的应用的需求、开发效率、代码重用率高;、跨平台,编写次,随处运行;四、开发界面友好,智能。1.3.3技术的难点数据库设计和维护、系统负荷和安全问题学生选课管理系统第一章系统规趔1.4经济可行性分析1.4.1预期支出基础投资计算机10台:5000*10=5万人员工资:5000儿*2月*10人=10力官传费用:1万其他不可知支出:2万支出共计:18万本学生选课管理系统其它所需的硬件(计算机及相关硬件)和软件环境MyEclipse8.5+ Tomcat.5.5+JDK1.6+ SQL Server2005),市场上都容易购买到或从相关网站下载。其屮JDK1.5为开源免费软件。而 SQL server2005本软件采用的是学习版,也是免费的, MyEclipse8.5以前已经购得,开发成本较小。1.4.2预期收益预期发售价格:2万/套目标客户:全国各大高校预期发售量:40套/年预期收益:40米2=80万预期收益>预期支出,开发本系统能够为投资者带来较高的收益。1.5社会可行性分析1.5.1法律因素开发使用的所有软件都选用正版,其中JDK1.5为开源免费软件。而SQLserver2005木软件采用的是学习版,也是免费的学生选课管理系统第一章系统规趔1.5.2用户使用可行性本软件操作简单,界面友好,功能完备,有一定计算机基础的人员就能进行操作。6意见结论根据上述分析,技术、济、社会可行性都可行,可以立即进行开发。学生选课管理系统第二章需求分析第二章需求分析2.1系统需求用户的需求具体体现在选课信息和用户信息的提供、保存、更新和查询的方面。这就要求数据库的设计必须合理,使之能够充分满足各种信息的输入和输出,保证数据存储的可靠性,并且能够快速取出和存入。而前台显示部分,应具有人性化的界面,方便用户操作。因各个学校的实际情况不同,系统应该具有兼容性。例如:一些学校学生人数较多,同时登陆系统,系统承载的负荷就很大。系统需要同时处理很人的数据量,这时系统不会因此崩溃。此外,系统还应该具有较强的安全性,保证身份不同的用户,不能越权操作。非合法用户不能对数据进行操作2.2功能需求通过系统功能的分析,结合需求分析员在各大高校实地考查,调查的对象涵盖了,学校的教职工、在校师生。特别是对已经运行了与本系统同类产品的学校的师生使用选课管理系统心得体会进行了分析,总结出如下的需求信息(1)学生的需求:能进行选课,査看管理员发布的选课信息,自己的选课凊况,本人的基本信息,课程的成绩;()教师的需求:能查看自己的个人信息,及所授课的班级的所有学生的本门课程的成绩信息,并能进行增加和修改;〔3)管理员的需求:对学生选课情况进行管理,包括发布选课信息,对学生的选课情况进行査看。管理员还可以对授课老师的信息进行管理。
    2020-12-09下载
    积分:1
  • Essential C++源代码
    Essential C++源代码,包括书内每章节案例源码及练习题答案源码。目录结构清晰,便于学习。附pdf版《Essential C++》
    2020-12-10下载
    积分:1
  • PSO粒子群算法,用于路径规划算法
    PSO路径规划算法,源码
    2020-11-28下载
    积分:1
  • 心电信号脑电信号数据
    本人采集的心电信号、脑电信号数据,特别适合用来做数字信号处理……
    2020-12-06下载
    积分:1
  • 频分多址,时分多址,码分多址等技术的综合介绍
    多址技术分为频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、空分多址(SDMA)。频分多址是以不同的频率信道实现通信。时分多址是以不同的时隙实现通信。码分多址是以不同的代码序列来实现通信的。空分多址是以不同的方位信息实现多址通信的。  TACS模拟通信采用的是频分复用技术  GSM数字通信采用的是频分复用和时分复用相结合的多址技术  CDMA采用码分多址技术。
    2021-05-07下载
    积分:1
  • D&C德卡D6系列接触式IC读写器开发包
    D&C德卡D6系列接触式IC卡读写器开发包,包含详细的中文说明文档及API设备接口函数说明及各类VC , .NET C# , .NET VB , DELPHI , POWERBUILDER, JAVA, ASP.NET的调用范例。
    2020-12-04下载
    积分:1
  • vrptw代码
    车辆路径选择问题,典型的VRP带时间窗的问题
    2020-11-28下载
    积分:1
  • OTSU算法二维matlab实现
    OTSU算法 二维 matlab 代码脉络清晰 稍做修改可转化为C代码
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载