登录
首页 » Others » Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)

Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)

于 2020-12-05 发布
0 125
下载积分: 1 下载次数: 1

代码说明:

在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab最小二乘法滤波
    matlab最小二乘法滤波 滤波 去噪 复原拉格朗日复原
    2020-12-05下载
    积分:1
  • 基于自写的随机森林算法的adult数据集分类
    压缩包主要采用随机森林算法处理adult数据集的分类问题,主要包含四部分,第一部分是由python编写的adult数据集预处理过程,第二部分是自己编写的随机森林算法处理adult数据集,第三部分是调用python中sklearn模块处理adult分类问题,第四部分是基于matlab调用5种机器学习分类算法分别处理adult分类问题比较哪种算法能够取得更好的分类效果。
    2020-12-09下载
    积分:1
  • 麦克风阵列前端语音信号处理
    个人学习笔记,稍稍整理下阵列波東形成技术模型最大信噪比最小方差无失真响应滤波器线性约束最小方差广义旁瓣相消基于阵列定位和跟踪技术互相关方法3.3.2广义互相关(基于特征向量的方法最小熵法白适应特征向量分解法自适应盲信号分离(,空域线性预测法语音信号预加重算法第五章模型高斯混合模型隐马尔可夫模型频率分析()深度神经网络第章信号处理语音信号特点在一段时间内),人的声带和声道形状是相对稳定的,可认为其特征是不变的。语音可以分为周期性的浊音和非周期的清音。浊音和清音绎常在一个音节中同时出现。浊音部分和音质关系密切,在时域上呈现岀明显的周期性,在频域上有共振峰结构,而且大部分能量集中在较低频段内,是语音中人幅度高能量的部分;清音则具有明显的时域和频域特征,类似于白噪声,能量较小,在强噪声中容易被掩盖,但在较髙信噪比时能提供较多的信息。在语音增强中,可以利用浊音的周期性特征,采用梳状滤波器提取语音分量或者抑制非语音信号,而清音则难以与宽带噪声区分,加性噪声大致上有:周期性噪声、脉冲噪声、宽带噪声和同声道的其亡语音干扰等。周期性噪声主要来源于发动机等周期性运转的机械,电气干扰,特别是电源交流声也会引起周期性噪声,其特点是有许多离散的窄谱峰。脉冲噪声来源于爆炸、撞击和放电等,表现为时域波形中突然出现的窄脉冲。宽带噪声的来源很多,包括热噪声、气流(风、呼吸)噪声及各种随杋噪声源,量化噪声也可视为宽带噪声。平稳的宽带噪声,通常也可以λ为宽带噪声。平稳的宽带噪声,通常也可以视为高斯白噪声。语音增强算法大致分为四种:参数法、非参数法、统讣法和其它方法。信号响应的意义对于任何一个信号均可以使用冲击函数来表示,即:∑()6(数字信号处理的意义就是通过运算来达到处理的目的,设这种运算关系为:]则输出信号()和输入信号()之间的关系指述为=[()。卷积推导设系统输入()=6()系统的输出()的初始状态为零,这时系统输出用()表示为则称()为系统的单位脉冲响应。则对任意输入信号(),系统输出为:()6(根据叠加原理可得:()∑()(-)∑()[6(-)利用系统时不变性,可得下式6(-)=(-),因此可得:()∑()o(-)=()*()上述就是卷积公式的推导。时域离散系统的输入输出描述法描述一个系统可以不管系统内部的结构如何,将系统看成一个黑盒子,只描述系统的输岀和输入之间的关系,这种描述法被成为输入输岀描述法。在模拟系统中使微分方程描述系统的输入和输出之间的关系,在时域离散系统中使用差分方程描述系统的输入和输岀关系点评:微分方程重在描述变化的趋势,差分方程的过程可以套用卷积的方法。时域离散信号傅里叶变换(TFT, Discrete- Time Fourier Transform)定义上述ω的单位是弧度,范围是x。其傅里叶反变换由如下公式得到:()周期信号由傅里叶级数表示傅里叶变换的一些性质时域卷积,频域相乘;时域相乘,频域卷积∑|()巴塞伐尔定理信号的功率也可以在频域求离散傅里叶变换(将有限长时域离散信号变换到频域的变换,但变换的结果是对时域离散信号的频谱的等问隔采样定义设序列()的长度为,定义()的点为()=[()=∑(式中,成为离散傅里叶变换区间长度,要求中即可得为书写简单,令则可以简写为:()=[()=∑()≤≤其反变换如下()=[()=-∑()和之间的关系:的主要性质)线性性质)隐含周期性)循环移位性质)有限长序列的循环移位设序列()的长度为,对()以≥为周期进行周期延拓,得到:()=()定义()的循环移位序列为()=^(+)()=(+)()上式表示将序列()以为周期进行周期延拓,再左移个单位取主值序列,就得到()的循环移位序列()。则有如下结论:设序列()的长度为,其循环移位序列为()=()())=[()()=[()短时傅里叶变换(,针对平稳信号的变换,语音信号在长时间跨度上不平稳,但其每个时间段内可看成是平稳的。定义°,()是输入信号,()是分析窗口(-)是纤过时域翻转并右移个采样点。类似于,离散定义如下)2()=∑()(其含义是在时域用窗函数截取信号,对截取部分的信号进行傅里叶变换,即在时刻得到时刻该段信号的傅里叶变换,不断移动,即可得到不同的傅甲叶变换,将这些傅里叶变换组合起来即得(o)计算在计算()和滤波器()卷积效率较高。的基木思想是将()分段,将分段后的每段与()卷积()=是任意的分段长度()=∑(-)()=∑(-)()=∑)*()=∑数字滤波器的最大优点是可以实现线性相位滤波。线性相位设的单位脉冲响应()的长度为,则其频响函数为()=∑()将(“)表示成如下形式e(a)式中,(a)是O的实函数,如果满足0(o)a则相位满足线性关系线性相位对时域和频域的约束)=∑O0展开可得:∑()(0-(o)=(a)((o)-(o)系数偶对称。窗函数设计其设计思想是使用逼近希望的滤波特性。基本方法)构造希望逼近的频响函数(“)
    2020-12-12下载
    积分:1
  • 控制电机伺服
    基于Labview的伺服电机控制 Labvizew 控制伺服电机转动
    2020-11-29下载
    积分:1
  • onvif rtsp流对接
    使用gsoap2.8.32生成的onvif架构!实现了rtsp对接。注意修改IP。
    2020-11-28下载
    积分:1
  • :【图书管理系统】需求规格说明书+详细设计说明书+测试报告
    软件工程实验报告:【图书管理系统】需求规格说明书+详细设计说明书+测试报告
    2020-12-07下载
    积分:1
  • MB85RC64驱动
    包含.c .h 文件,非系统性文件,可以加载到工程中直接运行。
    2020-11-28下载
    积分:1
  • 23825770Change-Detection-Code遥感影像变化检测经典算法(IR-MAD、MAD、CVA、PCA).zip
    SAR图像变化检测常用的算法,其中包括有PCA算法,MAD算法,IMAD算法。内涵数据集,附上PCA算法,MAD算法,IMAD算法处理的指标分析(均值,方差,Kappa指数,检错率,漏检率等)。亲测可用
    2021-05-07下载
    积分:1
  • SD卡SPI模式初始化和读取Verilog代码及相应仿真模型
    Verilog SD卡SPI模式初始化和读取Verilog代码及相应仿真模型,其中仿真模型仅支持 CMD0 CMD8 CMD55 CMD41完成SD卡初始化 及CMD17读取数据,供各位参考指正。
    2020-12-05下载
    积分:1
  • MIMO OFDM matlab仿真序,还有论文-MIMO
    MIMO OFDM matlab仿真程序,还有论文-MIMO
    2020-11-27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载