登录
首页 » Python » pytorch-tutorial

pytorch-tutorial

于 2020-11-26 发布
0 196
下载积分: 1 下载次数: 3

代码说明:

说明:  pytorch教程,包含pytorch包中的各类函数与神经网络搭建。(Python tutorial, including the python package of various functions and neural network building.)

文件列表:

pytorch-tutorial, 0 , 2020-10-12
pytorch-tutorial\.git, 0 , 2020-10-12
pytorch-tutorial\.gitignore, 43 , 2020-10-12
pytorch-tutorial\.git\config, 333 , 2020-10-12
pytorch-tutorial\.git\description, 73 , 2020-10-12
pytorch-tutorial\.git\FETCH_HEAD, 104 , 2020-10-12
pytorch-tutorial\.git\HEAD, 23 , 2020-10-12
pytorch-tutorial\.git\hooks, 0 , 2020-10-12
pytorch-tutorial\.git\hooks\applypatch-msg.sample, 478 , 2020-10-12
pytorch-tutorial\.git\hooks\commit-msg.sample, 896 , 2020-10-12
pytorch-tutorial\.git\hooks\fsmonitor-watchman.sample, 4655 , 2020-10-12
pytorch-tutorial\.git\hooks\post-update.sample, 189 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-applypatch.sample, 424 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-commit.sample, 1643 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-merge-commit.sample, 416 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-push.sample, 1348 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-rebase.sample, 4898 , 2020-10-12
pytorch-tutorial\.git\hooks\pre-receive.sample, 544 , 2020-10-12
pytorch-tutorial\.git\hooks\prepare-commit-msg.sample, 1492 , 2020-10-12
pytorch-tutorial\.git\hooks\update.sample, 3635 , 2020-10-12
pytorch-tutorial\.git\index, 6225 , 2020-10-12
pytorch-tutorial\.git\info, 0 , 2020-10-12
pytorch-tutorial\.git\info\exclude, 240 , 2020-10-12
pytorch-tutorial\.git\logs, 0 , 2020-10-12
pytorch-tutorial\.git\logs\HEAD, 194 , 2020-10-12
pytorch-tutorial\.git\logs\refs, 0 , 2020-10-12
pytorch-tutorial\.git\logs\refs\heads, 0 , 2020-10-12
pytorch-tutorial\.git\logs\refs\heads\master, 194 , 2020-10-12
pytorch-tutorial\.git\logs\refs\remotes, 0 , 2020-10-12
pytorch-tutorial\.git\logs\refs\remotes\origin, 0 , 2020-10-12
pytorch-tutorial\.git\logs\refs\remotes\origin\HEAD, 194 , 2020-10-12
pytorch-tutorial\.git\objects, 0 , 2020-10-12
pytorch-tutorial\.git\objects\info, 0 , 2020-10-12
pytorch-tutorial\.git\objects\pack, 0 , 2020-10-12
pytorch-tutorial\.git\objects\pack\pack-90a5d072acf3489f99e955237f84b0e1d4f40aef.idx, 26748 , 2020-10-12
pytorch-tutorial\.git\objects\pack\pack-90a5d072acf3489f99e955237f84b0e1d4f40aef.pack, 13424843 , 2020-10-12
pytorch-tutorial\.git\packed-refs, 114 , 2020-10-12
pytorch-tutorial\.git\refs, 0 , 2020-10-12
pytorch-tutorial\.git\refs\heads, 0 , 2020-10-12
pytorch-tutorial\.git\refs\heads\master, 41 , 2020-10-12
pytorch-tutorial\.git\refs\remotes, 0 , 2020-10-12
pytorch-tutorial\.git\refs\remotes\origin, 0 , 2020-10-12
pytorch-tutorial\.git\refs\remotes\origin\HEAD, 32 , 2020-10-12
pytorch-tutorial\.git\refs\tags, 0 , 2020-10-12
pytorch-tutorial\LICENSE, 1078 , 2020-10-12
pytorch-tutorial\logo, 0 , 2020-10-12
pytorch-tutorial\logo\pytorch_logo.png, 27763 , 2020-10-12
pytorch-tutorial\logo\pytorch_logo_2018.svg, 2113 , 2020-10-12
pytorch-tutorial\README.md, 2965 , 2020-10-12
pytorch-tutorial\tutorials, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\feedforward_neural_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\feedforward_neural_network\main.py, 3229 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\linear_regression, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\linear_regression\main.py, 1607 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\logistic_regression, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\logistic_regression\main.py, 2654 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\pytorch_basics, 0 , 2020-10-12
pytorch-tutorial\tutorials\01-basics\pytorch_basics\main.py, 6500 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\bidirectional_recurrent_neural_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\bidirectional_recurrent_neural_network\main.py, 3701 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\convolutional_neural_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\convolutional_neural_network\main.py, 3461 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\deep_residual_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\deep_residual_network\main.py, 6040 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\language_model, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\language_model\data, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\language_model\data\train.txt, 5143686 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\language_model\data_utils.py, 1346 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\language_model\main.py, 4143 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\recurrent_neural_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\02-intermediate\recurrent_neural_network\main.py, 3638 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\generative_adversarial_network, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\generative_adversarial_network\main.py, 5243 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\build_vocab.py, 2534 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\data_loader.py, 4033 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\download.sh, 460 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\model.py, 2773 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\png, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\png\example.png, 225516 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\png\image_captioning.png, 251706 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\png\model.png, 251644 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\README.md, 3172 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\requirements.txt, 41 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\resize.py, 1594 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\sample.py, 3114 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\image_captioning\train.py, 4598 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\main.py, 4672 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png, 0 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\content.png, 613258 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\neural_style.png, 1360524 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\neural_style2.png, 504654 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\style.png, 697823 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\style2.png, 970028 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\style3.png, 1272354 , 2020-10-12
pytorch-tutorial\tutorials\03-advanced\neural_style_transfer\png\style4.png, 1952471 , 2020-10-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 1
    说明:  稳健自适应波束形成,Wiley出版社,是一本有关MVDR波束形成稳健性分析的好书。(The latest research and developments in robust adaptive beamforming Recent work has made great strides toward devising robust adaptive beamformers that vastly improve signal strength against background noise and directional interference. This dynamic technology has diverse applications, including radar, sonar, acoustics, astronomy, seismology, communications, and medical imaging. There are also exciting emerging applications such as smart antennas for wireless communications, handheld ultrasound imaging systems, and directional hearing aids. Robust Adaptive Beamforming compiles the theories and work of leading researchers investigating various approaches in one comprehensive volume. Unlike previous efforts, these pioneering studies are based on theories that use an uncertainty set of the array steering vector. The researchers define their theories, explain their methodologies, and present their conclusions. Methods presented include: Coupling the standard Capon beamformers with a spher)
    2009-07-21 16:49:18下载
    积分:1
  • analysis
    Mlr:多元线性回,Plsr: 偏最小二乘回归。两种回归分析方法分析数据相关程度。(linear-regression analysis)
    2019-04-01 23:39:46下载
    积分:1
  • 一个非常简单的彩票软件,大家可以先看看!
    一个非常简单的彩票软件,大家可以先看看!-A very simple lottery software, we can take a look!
    2023-05-18 22:40:04下载
    积分:1
  • TCC em Latex UFRGS
    说明:  sugestiaon to latex formation for brazilian tcc
    2019-03-18 21:06:01下载
    积分:1
  • demo_scan
    说明:  在linux开发环境下采集Hokuyo雷达输出数据的程序(sampling Hokuyo output data program)
    2020-06-16 08:00:02下载
    积分:1
  • 搬运工,大家都玩过吧.这个是用c语言实现的.基本上实现游戏的大部分功能....
    搬运工,大家都玩过吧.这个是用c语言实现的.基本上实现游戏的大部分功能.-porters, we all tried it. C is the language used to achieve. Basically most of the game to achieve functional.
    2022-02-14 06:08:57下载
    积分:1
  • 数据结构里的走迷宫实验,把它编成一个类似坦克游戏的程序...
    数据结构里的走迷宫实验,把它编成一个类似坦克游戏的程序-data structure, the Maze experiments it into a game similar to the procedures for tanks
    2023-05-10 15:05:04下载
    积分:1
  • python
    关于梅尔谱图提取的一段小程序,用python写(A small program about the extraction of Mel spectrum, written in python)
    2019-04-04 21:33:08下载
    积分:1
  • FPGA
    说明:  fPGA中的竞争冒险现象的来源及其解决方法(FPGA in the source of the phenomenon of competitive risk-taking and their solutions)
    2008-12-06 17:10:46下载
    积分:1
  • This is a summary of mine Paladin, I can not prepare interface there is a comman...
    这是一个简易的扫雷游侠,由于我不会编写界面,所以是一个命令行下的模拟扫雷,:)-This is a summary of mine Paladin, I can not prepare interface there is a command line under the simulated mine, :)
    2022-03-11 00:35:10下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载