登录
首页 » Others » 利用Hopfield神经网络解决TSP问题-论文-源码-PPT

利用Hopfield神经网络解决TSP问题-论文-源码-PPT

于 2020-12-05 发布
0 737
下载积分: 1 下载次数: 1

代码说明:

利用Hopfield神经网络解决TSP问题-论文-源码-PPT源码是C++,里面有很详细的注解,另附论文和PPT讲稿,花费了很长时间把代码注解完,对于课程作业及课设很有帮助。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SLIC方法的超像素分割
    基于SLIC方法的超像素分割算法代码,纯MATLAB编写。
    2020-06-27下载
    积分:1
  • LFMCW雷达(汽车防撞)系统仿真代码
    车载LFMCW雷达系统仿真代码,详细,已通过实际测试。
    2020-11-28下载
    积分:1
  • 利用matlab实现语音盲分离
    本文利用了独立变量分析的算法,用 matlab实现了语音信号的盲分离。这在语音识别,以及未来机器人智能化上起着至关重要的作用
    2020-12-12下载
    积分:1
  • 小波方差用于调制识别
    小波方差用于调制识别,matlab程序,已经调试通过。
    2020-12-03下载
    积分:1
  • Python利用邻接矩阵绘制复杂网络图并分析网络基本拓扑特征.py
    【实例简介】利用python载入邻接矩阵绘制网络图,基于python语言的特点,对邻接矩阵加以处理后再进行应用,即将邻接矩阵去除第一列(节点序号列),复杂网络的基本拓扑结构可以用图论的方法表示成G =(V,E),V中元素称为节点或顶点,E中元素称为边。在图论框架下, 可用不同的全局参量来表示复杂网络的特征, 最基本特征包括度分布 P(k)和聚类系数C。
    2021-11-21 00:45:19下载
    积分:1
  • 某机械厂降压变电所电气设计
    一、负荷计算和无功功率计算及补偿二、变电所位置和形式的选择 三、变电所主变压器台数和容量及主接线方案的选择四、短路电流的计算五、变电所一次设备的选择与校验六、变电所高、低压线路的选择七、变电所二次回路方案选择及继电保护的整定八、防雷和接地装置的确定九、心得和体会 十、附录参考文献十一、附图高压电气主接线.dwg低压电气主接线.dwg厂区电缆走向图.dwg变电所平面布置图.dwg
    2020-12-11下载
    积分:1
  • 时域、频域特征提取
    提取数据的时域、频域指标,得到相应的时域和频域特征
    2020-11-27下载
    积分:1
  • 凸优化在信号处理与通信中的应用Convex Optimization in Signal Processing and Communications
    凸优化理论在信号处理以及通信系统中的应用 比较经典的通信系统凸优化入门教程ContentsList of contributorspage IxPrefaceAutomatic code generation for real- time convex optimizationJacob Mattingley and stephen Boyd1.1 Introduction1.2 Solvers and specification languages61. 3 Examples121. 4 Algorithm considerations1.5 Code generation261.6 CVXMOD: a preliminary implementation281.7 Numerical examples291. 8 Summary, conclusions, and implicationsAcknowledgments35ReferencesGradient-based algorithms with applications to signal-recoveryproblemsAmir beck and marc teboulle2.1 Introduction422.2 The general optimization model432.3 Building gradient-based schemes462. 4 Convergence results for the proximal-gradient method2.5 A fast proximal-gradient method2.6 Algorithms for l1-based regularization problems672.7 TV-based restoration problems2. 8 The source-localization problem772.9 Bibliographic notes83References85ContentsGraphical models of autoregressive processes89Jitkomut Songsiri, Joachim Dahl, and Lieven Vandenberghe3.1 Introduction893.2 Autoregressive processes923.3 Autoregressive graphical models983. 4 Numerical examples1043.5 Conclusion113Acknowledgments114References114SDP relaxation of homogeneous quadratic optimization: approximationbounds and applicationsZhi-Quan Luo and Tsung-Hui Chang4.1 Introduction1174.2 Nonconvex QCQPs and sDP relaxation1184.3 SDP relaxation for separable homogeneous QCQPs1234.4 SDP relaxation for maximization homogeneous QCQPs1374.5 SDP relaxation for fractional QCQPs1434.6 More applications of SDP relaxation1564.7 Summary and discussion161Acknowledgments162References162Probabilistic analysis of semidefinite relaxation detectors for multiple-input,multiple-output systems166Anthony Man-Cho So and Yinyu Ye5.1 Introduction1665.2 Problem formulation1695.3 Analysis of the SDr detector for the MPsK constellations1725.4 Extension to the Qam constellations1795.5 Concluding remarks182Acknowledgments182References189Semidefinite programming matrix decomposition, and radar code design192Yongwei Huang, Antonio De Maio, and Shuzhong Zhang6.1 Introduction and notation1926.2 Matrix rank-1 decomposition1946.3 Semidefinite programming2006.4 Quadratically constrained quadratic programming andts sdp relaxation201Contents6.5 Polynomially solvable QCQP problems2036.6 The radar code-design problem2086.7 Performance measures for code design2116.8 Optimal code design2146.9 Performance analysis2186.10 Conclusions223References226Convex analysis for non-negative blind source separation withapplication in imaging22Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi, and Yue Wang7.1 Introduction2297.2 Problem statement2317.3 Review of some concepts in convex analysis2367.4 Non-negative, blind source-Separation criterion via CAMNS2387.5 Systematic linear-programming method for CAMNS2457.6 Alternating volume-maximization heuristics for CAMNS2487.7 Numerical results2527.8 Summary and discussion257Acknowledgments263References263Optimization techniques in modern sampling theory266Tomer Michaeli and yonina c. eldar8.1 Introduction2668.2 Notation and mathematical preliminaries2688.3 Sampling and reconstruction setup2708.4 Optimization methods2788.5 Subspace priors2808.6 Smoothness priors2908.7 Comparison of the various scenarios3008.8 Sampling with noise3028. 9 Conclusions310Acknowledgments311References311Robust broadband adaptive beamforming using convex optimizationMichael Rubsamen, Amr El-Keyi, Alex B Gershman, and Thia Kirubarajan9.1 Introduction3159.2 Background3179.3 Robust broadband beamformers3219.4 Simulations330Contents9.5 Conclusions337Acknowledgments337References337Cooperative distributed multi-agent optimization340Angelia Nedic and asuman ozdaglar10.1 Introduction and motivation34010.2 Distributed-optimization methods using dual decomposition34310.3 Distributed-optimization methods using consensus algorithms35810.4 Extensions37210.5 Future work37810.6 Conclusions38010.7 Problems381References384Competitive optimization of cognitive radio MIMO systems via game theory387Gesualso Scutari, Daniel P Palomar, and Sergio Barbarossa11.1 Introduction and motivation38711.2 Strategic non-cooperative games: basic solution concepts and algorithms 39311.3 Opportunistic communications over unlicensed bands411.4 Opportunistic communications under individual-interferenceconstraints4151.5 Opportunistic communications under global-interference constraints43111.6 Conclusions438Ackgment439References43912Nash equilibria: the variational approach443Francisco Facchinei and Jong-Shi Pang12.1 Introduction44312.2 The Nash-equilibrium problem4412. 3 EXI45512.4 Uniqueness theory46612.5 Sensitivity analysis47212.6 Iterative algorithms47812.7 A communication game483Acknowledgments490References491Afterword494Index49ContributorsSergio BarbarossaYonina c, eldarUniversity of rome-La SapienzaTechnion-Israel Institute of TechnologyHaifaIsraelAmir beckTechnion-Israel instituteAmr El-Keyiof TechnologyAlexandra universityHaifEgyptIsraelFrancisco facchiniStephen boydUniversity of rome La sapienzaStanford UniversityRomeCaliforniaItalyUSAAlex b, gershmanTsung-Han ChanDarmstadt University of TechnologyNational Tsing Hua UniversityDarmstadtHsinchuGermanyTaiwanYongwei HuangTsung-Hui ChangHong Kong university of scienceNational Tsing Hua Universityand TechnologyHsinchuHong KongTaiwanThia KirubarajanChong-Yung chiMcMaster UniversityNational Tsing Hua UniversityHamilton ontarioHsinchuCanadaTaiwanZhi-Quan LuoJoachim dahlUniversity of minnesotaanybody Technology A/sMinneapolisDenmarkUSAList of contributorsWing-Kin MaMichael rebsamenChinese University of Hong KongDarmstadt UniversityHong KonTechnologyDarmstadtAntonio de maioGermanyUniversita degli studi di napoliFederico iiGesualdo scutariNaplesHong Kong University of Sciencealyand TechnologyHong KongJacob MattingleyAnthony Man-Cho SoStanford UniversityChinese University of Hong KongCaliforniaHong KongUSAJitkomut songsinTomer michaeliUniversity of californiaTechnion-Israel instituteLoS Angeles. CaliforniaogyUSAHaifaMarc teboulleTel-Aviv UniversityAngelia NedicTel-AvUniversity of Illinois atIsraelUrbana-ChampaignInoSLieven VandenbergheUSAUniversity of CaliforniaLos Angeles, CaliforniaUSAAsuman OzdaglarMassachusetts Institute of TechnologyYue WangBoston massachusettsVirginia Polytechnic InstituteUSAand State UniversityArlingtonDaniel p palomarUSAHong Kong University ofScience and TechnologyYinyu YeHong KongStanford UniversityCaliforniaong-Shi PangUSAUniversity of illinoisat Urbana-ChampaignShuzhong zhangIllinoisChinese university of Hong KongUSAHong KongPrefaceThe past two decades have witnessed the onset of a surge of research in optimization.This includes theoretical aspects, as well as algorithmic developments such as generalizations of interior-point methods to a rich class of convex-optimization problemsThe development of general-purpose software tools together with insight generated bythe underlying theory have substantially enlarged the set of engineering-design problemsthat can be reliably solved in an efficient manner. The engineering community has greatlybenefited from these recent advances to the point where convex optimization has nowemerged as a major signal-processing technique on the other hand, innovative applica-tions of convex optimization in signal processing combined with the need for robust andefficient methods that can operate in real time have motivated the optimization commu-nity to develop additional needed results and methods. The combined efforts in both theoptimization and signal-processing communities have led to technical breakthroughs ina wide variety of topics due to the use of convex optimization This includes solutions tonumerous problems previously considered intractable; recognizing and solving convex-optimization problems that arise in applications of interest; utilizing the theory of convexoptimization to characterize and gain insight into the optimal-solution structure and toderive performance bounds; formulating convex relaxations of difficult problems; anddeveloping general purpose or application-driven specific algorithms, including thosethat enable large-scale optimization by exploiting the problem structureThis book aims at providing the reader with a series of tutorials on a wide varietyof convex-optimization applications in signal processing and communications, writtenby worldwide leading experts, and contributing to the diffusion of these new developments within the signal-processing community. The goal is to introduce convexoptimization to a broad signal-processing community, provide insights into how convexoptimization can be used in a variety of different contexts, and showcase some notablesuccesses. The topics included are automatic code generation for real-time solvers, graphical models for autoregressive processes, gradient-based algorithms for signal-recoveryapplications, semidefinite programming(SDP)relaxation with worst-case approximationperformance, radar waveform design via SDP, blind non-negative source separation forimage processing, modern sampling theory, robust broadband beamforming techniquesdistributed multiagent optimization for networked systems, cognitive radio systems viagame theory, and the variational-inequality approach for Nash-equilibrium solutionsPrefaceThere are excellent textbooks that introduce nonlinear and convex optimization, providing the reader with all the basics on convex analysis, reformulation of optimizationproblems, algorithms, and a number of insightful engineering applications. This book istargeted at advanced graduate students, or advanced researchers that are already familiarwith the basics of convex optimization. It can be used as a textbook for an advanced graduate course emphasizing applications, or as a complement to an introductory textbookthat provides up-to-date applications in engineering. It can also be used for self-study tobecome acquainted with the state of-the-art in a wide variety of engineering topicsThis book contains 12 diverse chapters written by recognized leading experts worldwide, covering a large variety of topics. Due to the diverse nature of the book chaptersit is not possible to organize the book into thematic areas and each chapter should betreated independently of the others. a brief account of each chapter is given nextIn Chapter 1, Mattingley and Boyd elaborate on the concept of convex optimizationin real-time embedded systems and automatic code generation. As opposed to genericsolvers that work for general classes of problems, in real-time embedded optimization thesame optimization problem is solved many times, with different data, often with a hardreal-time deadline. Within this setup the authors propose an automatic code-generationsystem that can then be compiled to yield an extremely efficient custom solver for theproblem familyIn Chapter 2, Beck and Teboulle provide a unified view of gradient-based algorithmsfor possibly nonconvex and non-differentiable problems, with applications to signalrecovery. They start by rederiving the gradient method from several different perspectives and suggest a modification that overcomes the slow convergence of the algorithmThey then apply the developed framework to different image-processing problems suchas e1-based regularization, TV-based denoising, and Tv-based deblurring, as well ascommunication applications like source localizationIn Chapter 3, Songsiri, Dahl, and Vandenberghe consider graphical models for autore-gressive processes. They take a parametric approach for maximum-likelihood andmaximum-entropy estimation of autoregressive models with conditional independenceconstraints, which translates into a sparsity pattern on the inverse of the spectral-densitymatrix. These constraints turn out to be nonconvex. To treat them the authors proposea relaxation which in some cases is an exact reformulation of the original problem. Theproposed methodology allows the selection of graphical models by fitting autoregressiveprocesses to different topologies and is illustrated in different applicationsThe following three chapters deal with optimization problems closely related to SDPand relaxation techniquesIn Chapter 4, Luo and Chang consider the SDP relaxation for several classes ofquadratic-optimization problems such as separable quadratically constrained quadraticprograms(QCQPs)and fractional QCQPs, with applications in communications and signal processing. They identify cases for which the relaxation is tight as well as classes ofquadratic-optimization problems whose relaxation provides a guaranteed, finite worstcase approximation performance. Numerical simulations are carried out to assess theefficacy of the SDP-relaxation approach
    2020-12-10下载
    积分:1
  • VIPER Tools2.0 (MESMA的ENVI的扩展插件)
    VIPER Tools 工具是由 Roberts,Halligan 和 Dennison 团队在 2008 年开发的一款向用户免费开放使用的 ENVI 插件,对多波段光学遥感数据(包括多光谱、高光谱)提供一整套影像分析工具,原网址:http://www.vipertools.org/现在已经打不开了,仅此一份,如假包换!PS:如果无法按照,可以使用IDL+ENVI Classic,然后在IDL中打开所有的*.pro文件,运行即可见Spectral-Viper Tools
    2020-12-05下载
    积分:1
  • 广数980td系列2级密码及相关操作
    GSK980TD配置流程: (1)用串口通信电缆连接PC机和GSK980TD;(2)在PC机上运行配置软件GSKCC,设置串行通讯端口和波特率;(3)在GSK980TD录入方式下进入密码设置界面,输入机床厂家密码(2级操作密码),按PC机的通讯波特率设置参数№44;(4)点击GSKCC工具栏的建立连接按钮,PC机和GSK980TD建立连接。如果连接失败,需检查通信电缆连接、串行通讯端口和波特率设置;(5)点击GSKCC文件上传按钮,在对话框中选择文件(建议选择全部文件),将系统的文件上传至PC机,GSKCC将文件保存在新建的配置工程中(建议将配置工程另存作备份);(6)在GSKCC界面编辑PLC梯形图、参数、刀补数据、螺补数据、加工程序等文件并保存配置工程;(7)确认配置工程正确后,打开GSK980TD的参数开关和程序开关,并输入2级操作密码,点击GSKCC工具栏的建立连接按钮,PC机和GSK980TD建立连接;(8)点击GSKCC工具栏的文件下载按钮,在对话框中选择需下载到系统的文件,点确定后,GSKCC将已选择的文件下载到GSK980TD;(9)文件下载完成后,GSK980TD须重新上电下载的PLC梯形图和参数才能生效。GSK980TD配置完成后,应进行功能检查、调试。 如果已有完整的配置工程文件,可以用GSKCC打开已有的配置工程,直接下载到GSK980TD完成配置。 可以用通讯电缆连接已配置和未配置的GSK980TD,从已配置的系统向未配置的系统遂一传送PLC梯形图、参数、刀补数据、螺补数据、加工程序等文件,完成GSK980TD 的配置。GSK980TDCNC间的文件传输操作详见《GSK980TD产品说明书·第三篇操作说明》。 注意: z下载包含PLC梯形图、参数、刀补数据、螺补数据等文件的配置工程时,GSK980TD 里对应的文件将被直接覆盖(替换),下载配置工程前务必确认文件的准确性。GSKCC 新建的配置工程里,PLC程序为空梯形图,所有的参数数据为0,如果新建的配置工程未编辑就直接下载,GSK980TD会因为PLC梯形图、参数被覆盖而无法正常工作。z建议机床厂家在配置、调试完成后,将GSK980TD的PLC梯形图、参数、刀补数据、 螺补数据、加工程序文件以GSKCC的配置工程保存到PC机作为资料备份,方便同类机床配置、调试,也便于产品出厂后的维护。
    2020-06-24下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载