登录
首页 » Others » 光纤通信系统的Matlab仿真

光纤通信系统的Matlab仿真

于 2020-12-06 发布
0 252
下载积分: 1 下载次数: 5

代码说明:

光纤通信系统的Matlab仿真,目前现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而光纤通信是这三者中的主体,这是因为光纤通信具有许多突出的优点。 

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB OPTI Toolbox工具箱,包括scip.mexw64文件和sedumi求解器,求解器相对比较全
    【实例简介】MATLAB OPTI Toolbox工具箱,包括OPTI-OPTI_Toolbox_v2.28_Released.zip、optiMEXFiles_mexw64_2_28.zip、scip.mexw64和sedumi-1.3.4.zip文件,是目前求解器相对比较全的安装文件,在本人博客中有配套的安装说明。
    2021-11-07 00:33:58下载
    积分:1
  • 太阳能控制器PCB电路与SCH原理图-PCB下载站
    太阳能控制器PCB电路与SCH原理图-PCB下载站
    2021-05-06下载
    积分:1
  • 求取灰度共生矩阵参数(能量、熵、惯性矩、相关性)的Matlab源
    通过该Matlab程序可以求取用于描述图像纹理特征的灰度共生矩阵参数(能量、熵、惯性矩、相关性)。可以分别求取0,45°,90°,135°方向上的特征参数,同时可以求出这些特征参数的平均值与标准差。
    2020-12-09下载
    积分:1
  • 水库调度的动态规划
    调库的动态规划程序,以三峡电站-葛洲坝电站为模型,简单适用。
    2020-11-29下载
    积分:1
  • Ansoft HFSS 基础及应用-谢拥军.pdf
    Ansoft HFSS 基础及应用-谢拥军.pdf
    2020-12-05下载
    积分:1
  • DES C语言源代码, 雪崩性质分析,差分分析,自己设计S盒进行加密
    C语言实现——应用分组密码体制的基本原理,实现DES加解密,并分析 DES 的雪崩性质,对DES加密进行差分分析,并利用自己设计的S盒进行加密
    2020-12-01下载
    积分:1
  • Keil.STM32L0xx_DFP.2.0.0.pack
    官网下载的Keil.STM32L0xx_DFP.2.0.0.pack。亲测,OK。只需要下载,解压,安装.pack包到自己的KEIL安装路径即可(一般默认安装路径)
    2020-12-09下载
    积分:1
  • 单相交流调压电路 相控式交流调压电路
    通过某种装置对交流电压的有效值进行调整叫做交流调压。交流调压的方式一般分为三种:相控式、斩波式、通断式。第一种的电路一般由晶闸管构成,通过改变控制角实现调压。第二种又叫交流斩波器,一般要用全控型器件来实现。第三种也叫功率控制器,主电路也相控电路相似,但控制规则不同。本节只讨论相控式交流调压。
    2021-05-06下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 基于matlab的声音信号频谱分析和时域分析
    这里主要是对声音信号进行分析。因为Matlab在数字信号处理上的便捷,又有功能强大的工具箱辅助设计,所以我们可以利用Matlab完成声音信号频谱分析和时序分析的设计。本次设计内容包括:1) 信号的获取2) 时域分析:包括频率,振幅,相位,周期,均值,峰值等3) 频域分析:主要分析波形的幅值、相位与频率的关系
    2020-12-02下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载