登录
首页 » Others » 认知无线电频谱感知中能量检测方法Matlab仿真代码

认知无线电频谱感知中能量检测方法Matlab仿真代码

于 2020-12-06 发布
0 288
下载积分: 1 下载次数: 7

代码说明:

该代码绘制了在虚警概率一定时,检测概率和信噪比之间的关系曲线即检测器的检测性能曲线。代码参考了文献《Sensing-Throughput Tradeoff for Cognitive Radio Networks》。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • FPGA数字信号处理(二)并行FIR滤波器Verilog设计
    并行结构FIR滤波器的Verilog HDL代码,Vivado工程,含testbench与仿真,仿真结果优秀
    2020-12-12下载
    积分:1
  • matlb 慢特征分析
    slow feature analysis 慢特征分析matlab源代码,参考文献:Wiskott, L. and Sejnowski, T.J. (2002), "Slow Feature Analysis:Unsupervised Learning of Invariances",
    2020-12-04下载
    积分:1
  • 图像/视频的超分辨率复原
    第一篇 基础知识第1章 图像/视频基础知识第2章 图像缩放第3章 图像质量增强基本技术第4章 超分辨率复原技术第二篇 基于重建的超分辨率复原第5章 基于重建的图像超分辨率复原技术概述第6章 凸集投影和最大后验概率估计第7章 基于mrf模型的map图像超分辨率复原第8章 基于梯度矢量流约束的图像超分辨率复原第9章 基于对象的监控视频超分辨率复原第10章 基于权值矩阵的超分辨率盲复原第11章 基于小波变换域的超分辨率复原第12章 基于单帧高分辨率图像的视频序列超分辨率复原第三篇 基于学习的超分辨率复原第13章 基于学习的超分辨率复原技术概述第14章 基于示例学习
    2020-12-09下载
    积分:1
  • 基于MATLAB的飞行仿真
    该文介绍了一种小型飞机飞行模拟器飞行仿真模型的开发过程。建立了非线性的动力学方程和起落架模型,采用插值方法生成气动系数, 利用SimulinkTM中航空工具箱构建环境模型, 使用StateflowTM 表述逻辑关系。气动数据来源于DATCOM。较为完整的模型,使得仿真整个飞行的过程,滑跑,起飞,巡航,降落得以实现。进行了飞机起飞和降落阶段的仿真,结果表明模型可用。非线性的数学模型能够比较真实地反映飞机的实际特性。仿真模型开发的成功为模拟器的建立打下了基础。
    2020-12-04下载
    积分:1
  • 利用模拟退火算法实现矩形件排样
    利用模拟退火算法,基于最优下线编码方式,对矩形件进行下料处理。
    2020-12-02下载
    积分:1
  • MANET的OLSR路由协议的研究与仿真
    通过研究OLSR协议及MPR技术之后,利用OPNET仿真工具在节点高速运动的环境下,对协议进行了仿真,通过网络吞吐量、路由开销、数据分组成功接收率等参数来评价MANET网络性能的指标。4820049ete delaythroughputsuccess ratethroughput120840a0.696%,40nodes success rate0.00404i inOdes success rate75kbits ls: 1000.201545751051351651800.00770 kbits s。图240个节点和100个节点的 success rateOLSR0.008Ad hoc0007Ad hoc0006b0.005Ad hoc00040003Ad hocOLSR0002r4Onodes ete delayOLSR0001100nodes ete delayAd hocOlSR00154575105135165180timeOSR图340个节点和00个节点的 etE delayOISR80000本4Ad hoc0000份6000050000I] Optimized Link State Routing Protocol T. Clausen Fr P. Jacquet.复40000Ed rfc 3626 October 20B30000Nodes throughput「2 Tanenbaum A s,Computer Netw orks(Third占20000100nodes throughputEdition),1998,27227300000[3 Christi an Hui temaRouting in the Internet0154575105135165180,199812:75-90timel s[4OpneTsimulatorhttp://www.opnetcaml图440个节点和100个节点的 throughput[5 IEEE &2 11 sandard Wireless Lan Medum Access Cont rol (MAC)(fTE. delay )and Physical I ayer(HY) perini cation June, 1997ETEETE[Ad hoc3,2001,1(1):11-14?1994-2014ChinaAcademicJournaleLectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
    2020-12-04下载
    积分:1
  • 平面变压器3D仿真资料
    采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
    2020-12-10下载
    积分:1
  • 图论——有向图的关联矩阵和邻接矩阵的转换matlab
    可以快速实现有向图的关联矩阵和邻接矩阵的转换
    2020-12-01下载
    积分:1
  • UPS中的逆变电路
    逆变电路是UPS电源的核心电路。作者在剖析若干知名厂家生产的UPS电源电路的基础上,对UPS电源中的逆变电路进行了探讨。本文所涉及的电路,是这些厂家技术人员多年技术经验的结晶,并且经历过大量产品投放市场后的考验,具有很好的参考价值。作者在此发表出来,供业内人士和有兴趣者参考。 UPS电源有很多分类,作者根据业内的习惯,将UPS电源分为工频机和高频机。本文中的工频机和高频机采用的都是正弦波逆变电路,输出的都是正弦波电压,并且都是在线式结构。文中只涉及正弦波逆变电路,以下简称逆变电路。
    2020-12-01下载
    积分:1
  • 微电网下垂控制仿真
    微电网下垂控制仿真,多个微源仿真,自己搭建的,希望对您们有用
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载