登录
首页 » Others » 基于Matlab的多图像超分辨率重建算法

基于Matlab的多图像超分辨率重建算法

于 2020-12-06 发布
0 375
下载积分: 1 下载次数: 2

代码说明:

多图像超分辨率的实现主要就是将具有相似而又不同却又互相补充信息的配准影像融到一起,得到非均匀采样的较高分辨率数据,复原需要亚像素精度的运动矢量场,然而它们之间的运动模型估计精确与否直接影响到重建的效果,因此影像配准和运动模型的估计精度是高分辨率图像重建的关键。由于实际中不同时刻获得的影像数据间存在较大的变形、缩放、旋转和平移,因此必须对其进行配准,在此基础上进行运动模型估计。然后通过频率域或空间域的重建处理,生成均匀采样的超分辨率数据

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • c#学生管理系统
    c#学生管理系统,和毕业设计差不多了,大一时做的,里面有详细的文档说明,如果觉得可以,请评分学生信息管理系统是一个教育单位不可缺少的部分,它的内容对于学校的决策者和管理者来说都至关重要。本文介绍了学生信息管理系统的开发整个过程,阐述了系统分析、系统设计、系统实施的全过程。在开发方法上本系统利用了软件工程化的思想和方法,总体上采用结构化具体模块实施采用了原型法和面向对象系统开发方法。并采用Visual Studio 2008作为开发工具,SQL Server 2000作为后台数据库。本系统具有学生档案管理,教师档案管理,班级管理,课程管理,成绩管理,专业管理等模块,可分别完成学生档案,教室档
    2020-12-02下载
    积分:1
  • ACCESS版教学管理系统
    ACCESS版教学管理系统教学管理系统 ACCESS
    2021-05-07下载
    积分:1
  • 光伏三相逆变并网、MPPT控制的Matlab/Simulink仿真.rar
    资源包含光伏MPPT控制+并网逆变slx类型仿真文件+输出波形记录文件,能在MATLAB2018a平台运行下良好运行,逆变器输出电压、电流为正弦波形。
    2020-06-22下载
    积分:1
  • matlab使用gabor变换和神经网络实现人脸识别。可用。
    matlab下,使用gabor和神经网络实现人脸识别,有代码、说明文档、样例图片。亲测可用。很好的学习材料,从网上下载的。
    2020-12-05下载
    积分:1
  • 基于QT的五子棋系统
    基于QT的五子棋系统,包括人人对战,人机对战和局域网联机对战三种模式。还包括悔棋,提示,计时,截图,即时聊天,背景音乐,背景图片。页面简洁美观。个人作业,可能写得不太清晰,请多多包涵~
    2020-12-09下载
    积分:1
  • pcl计算点云的法向量和曲率,并保存在txt文件
    该代码在vs2017中配置的PCL1.9.0环境中运行成功,可以求得点云的法向量和曲率,并存储在txt文件中。
    2020-12-09下载
    积分:1
  • 基于Hadoop架构的文本分类算法
    基于Hadoop的文本分类算法系统,本系统实现了分词处理,停用词处理(IK);使用朴素贝叶斯分类算法来对文本进行训练和分类,在测试过程中使用词频特征选择作为特征词选择算法,分类准确率达到了78%,包含卡方特征选择算法(训练集特征选择)。
    2020-12-03下载
    积分:1
  • matlab ode45使用方法
    ode45 matlab使用方法ode45 matlab
    2020-12-03下载
    积分:1
  • Xilinx ISE14.7 license
    XIlinx ISE14.7 激活版license,很好用的
    2020-12-06下载
    积分:1
  • 基于卷积神经网络的图像识别
    基于卷积神经网络的图像识别 基于卷积神经网络的图像识别关于学位论文独创声明和学术诚信承诺本人向河南大学提出硕士学位申请。本人郑重声明:所呈交的学位谂文是本人在导师的指导下独立完成的,对所研究的课题有新的见解。据我所知,除文中特别加以说明标注和致谢的地方外,论文中不包括其它人已经发表或撰写过的研究成果,也不包括其它人为获得任何教育、科研机构的学位或证书而使用过的材料。与我一同工作的同事对本研究所做的任何贡献均己在论文中作了明确的说明并表示了谢意在此本人郑重承诺:所呈交的学位论文不存在舞弊作伪行为,文责自负。学位申请人(学位论文作者)签名:亚强2015年5月20日关于学位论文著作权使用授权书本人经河南大学审核批准授予硕士学位。作为学位论文的作者,本人完全了解并同意河南大学有关保留、使用学位论文的要求,即河南大学有权向国家图书馆、科研信息机构、数据收集机构和本校图书馆等提供学位论文(纸质文本和电子文本)以供公众检索、查阅。本人授衩河南大学出于宣扬、展览学校学术发展和进行学术交流等目的,可以采取影印、缩印、扫描和拷贝等复制手段保存、汇编学位论文(纸质文本和电子文本)(涉及保密内容的学位论文在解密后适用本授权书)学位获得者(学位论文作者)签名:卫2015年5月20日学位论文指导教师签名:2015年5月20日摘要Deep learning是机器学习研究的新领域,掀起了机器学习的新浪潮,在各个行业都受到了广泛的关注。 Google brain项目、微软全自动同声传译系统、百度硏究院等都是 deep learning技术发展的见证。随着大数据和深度模型时代的来临,deeplearning技术也得到了广泛的重视和发展,它带来的技术进步也必将改变人们的生活随着机器学习领域的发展,最近几年对卷积神经网络的研究也越发深入。现在卷积神经网络已经广泛的应用到各种领域,并取得了巨大的成果。卷积神经网络是在人工神经网络的基础上发展起来的·种高效的识别算法。典型的积网络结构是由 Lecrn提出的 LeNe t-5,它包含多个阶段的卷积和抽样过程,然后将提取到的特征输入到全连接层进行分类结果的计算。卷积神经网络通过特征提取和特征映射过程,能够较好的学习到图像中的不变特征。现在研究人员在典型的 LeNet5的基础上,使用多种方法改善卷积网终的结构和性能,从而提高网终的通用性和对图像的识别效果。本文结合图像的特点,在深入硏究了卷积网络的理论和国内外研究成果的基础上主要做了以下工作:(1)研究了卷积网络的训练算法,通过对算法分析,调试并找到最优初始化参数和最适应的网络结构配置。(2)对于分类结果的计算,使用了多区域的测试方法,通过在测试的过程中对图像的多个区域进行计算能够提高图像识别的准确率。〔3)为系统设计了一个通用的数据集输入接口,可以将自己构建的图像薮据集输入到卷积神经网络的结构中,训练和查看图像分类的结果。(4)在卷积层使用了局部偏差垬亨和非共亨两种方法,在数据集上测试并进行结果分析。(5)在隐含层使用了网络泛化的方法 DROPOUT,在数据集上测试并进行结果分析。通过以上改进方法的使用,卷积网络的通用性和性能得到了提高。关键词:,图像识别,特征提取
    2020-11-30下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载