登录
首页 » Others » allan方差的MATLAB实现

allan方差的MATLAB实现

于 2020-12-06 发布
0 206
下载积分: 1 下载次数: 0

代码说明:

大部分是allan方差的MATLAB实现,11种,全死网上下的,仅供参考

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • IEC61970 中文本(全)
    IEC 61970是国际电工委员会制定的《能量管理系统应用程序接口(EMS-API)》系列国际标准。对应国内的电力行业标准DL890。   IEC 61970系列标准定义了能量管理系统(EMS)的应用程序接口(API),目的在于便于集成来自不同厂家的EMS内部的各种应用,便于将EMS与调度中心内部其它系统互联,以及便于实现不同调度中心EMS之间的模型交换。   IEC 61970主要由接口参考模型、公共信息模型(CIM)和组件接口规范(CIS)三部分组成。接口参考模型说明了系统集成的方式,公共信息模型定义了信息交换的语义,组件接口规范明确了信息交换的语法。   虽然IEC 61970称为“能量
    2020-12-01下载
    积分:1
  • Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)
    在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space
    2020-12-05下载
    积分:1
  • ddr2控制器.rar
    【实例简介】利用verilog编写的ddr2控制器,在spartan6板子上得以验证,成功实现了FPGA与DDR2的通信
    2021-12-02 00:43:27下载
    积分:1
  • 用matlab的gui的处理实验数据的小
    主要是对测试数据进行分析,dat或txt格式读取,xsl格式输出界面中显示处理的数据结果
    2020-12-09下载
    积分:1
  • IDL矢量(shp)裁剪栅格
    IDL矢量(shp)裁剪栅格,两步即可实现,首先掩膜区域得到掩膜范围,然后重新定义格框,生成裁剪区域,适合各种类型polygon多边形裁剪。
    2021-05-06下载
    积分:1
  • 语音信号处理实验素材 wav语音文件
    语音信号处理实验素材 wav语音文件,可于MATLAB 语音信号处理实验
    2020-11-27下载
    积分:1
  • 世界地图shp.zip
    本套世界地图shape文件底图以国家测绘地理信息局公布的世界标准地图(编号:GS(2016)1666)为参考绘制,用该底图已投两个C刊,均符合期刊图形审查要求!底图是最新2019版的,有详细和简单两个版本,简单版包含国境线和城市。详细版包含大洲、国境线、城市、世界各国行政区划、湖泊、河流、经纬线等要素图层,可以根据个人需要进行删减。
    2021-05-07下载
    积分:1
  • 基于LabWindows/CVI的虚拟仪器设计.pdf
    基于LabWindows/CVI的虚拟仪器设计.pdf目录541功能描述……口中…14754.2设计原理…147543设计步骤………………4855设计举例4基数字滤波技术的虚找频率补偿仪…55I功能描述…………154552设计原理…………………………4154553设计步骤159第6章基于相关伪随机技术的虚拟仪器设计……………17161相关辨识的基础知识6l1系统数学模型的主要描述形式…吧看罪甲噜看音·自老·着着。甲曾會自·看着174612系统输入输出关系的卷积表述形式175613由系统的冲激响应函数求系统的频率特性…177614相关辨识法的优点………………1762伪随机信号—相关辨识实际采用的激励信号9621伪随机信号的性质……………180622M序列伪随机信号的产生62.3 Labwindows/cⅥ环境中M信号的产生…………184▲63设计举例口和2—伪随机相关辨识仿真仪灬194631例[一一阶系统辨识仿真仪………………194632例[2}_二阶系统辨识仿真仪……208▲64设计举例3}-系统参数辨识实测仪-25641功能描述…………………216642设计原理……………………216643设计步骤bb●自看是题bDpD命各备命罪即非国百D看山會看看看q看甲q:音ts223644系统参数辨识仪的性能检验…236645小结239第7章基于神经网络的虚拟仪器设计………吾号.·D罪D·咖自音噜唱日司看自命是··昏b●甲」24171概述……………………247.2神经网络基础知识…4721神经网络结构………244722神经元模型……246723神经元作用函数…247724BP神经网络250基于凵 abwindows/C的虚拟仪设计72.5径向基(RBF)神经网络……25573 MATLAB工具箱中的BP与RBF函数5731BP与RBF网络创建函数……257732网络训练函数………259733网络初始化函数2637.34网络学习函数pseD即■日■■曾264735网络仿真函数酯“着申自曲量ab血a▲bdd暴Db自合·看单■即非兽pD鲁26674设计举例[虚拟压力传感器温度补偿器…26266741功能描述…………742工作原理……267743设计步骤…命a4.品中B自●非昏·:·:是PP…271L75设计举例2一虚拟三组分气体成分分析仪的设计2837.51功能描述…单当香s·.甲命命甲二··········a283752工作原理……………283753设计步骤………87754设计小结…297第8章基于小波分析的虚拟仪器设计……2998.1小波分析基础…已得…,…下不已是811小波分析与短时傅里叶变换………301812离散小波与小波对偶品百·。命自日自目即合D即章矿●印·…306813小波级数多事品◆晶号提品4··B旨自D导看308814多分辨分析初步……309815正交小波…316816小波包分析………:32382 MATLAB王具箱中小波分析函数…325821小波包函数……p品a由自日自值合◆··年卓看自53483设计举例一虚拟小波消噪仪…340831小波消噪原理..340832虚拟小波消噪仪设计a品血吾春自白看令节自B导342L84设计举例2—虚拟特征信号提取仪8.41特征信号小波提取原理灬………………350842仪器功能中▲如婚+44“亠b白自自4·1··.……350843仪器设计………………350目录844运行测试…356第9章基于混沌技术的虚拟仪器设计·是Da命品西·盲血·鲁自D鲁唱唱非看4看a■自…357▲9.1概述………………35992混沌技术基础知识0921基于 Duffing方程实现频率测量检测原理…………360922基于 Logist迭代方程产生白噪声的原理…………36993设计举例一基于 Logist方程的虚拟白噪声发生器…375931设计举例1基于 Logist方程的虚拟白噪声仿真仪…375932设计举例[2]_基于 Logist方程的拟简易白噪声发生器…380933设计举例3}基于 Logist方程的虚拟白噪声发生器及其性能评估仪■D即口即即要号■………384h94设计举例基于混沌技术的频率仿真测试仪一941功能描述…………………389942工作原理……390943混沌精密频率仿真测试仪的实现396944性能校验……3999.5设计举例2]基于混沌技术的精密频率实测仪”399第10章基于模糊理论的虚拟仪器设计……●鲁看●4命1a!模糊集合理论概述”010L1模糊集合的定义及其表示方法…P·●吾音p聊·品日.···P.身10.12隶属函数的确定方法及常用形式10.1.3模糊集合的基本运算……41010.14模糊关系的定义及合成……●pb自●哥司q■P省…4ll10.1.5语言变量与模糊推理…………………413102模糊传感器系统“……………1021测量结果“符号化表示”的概念…4151022模糊传感器的基本概念和功能………中中416102.3模糊传感器的结构………备合自看司q·是即即罪罪看血咖音看叠看4q●命4171024模糊传感器语言描述的产生方法……………4200.25模糊传感器对测量环境的适应性………………4241026模糊传感器隶属函数的训练算法…………426103设计举例1虚拟模糊热点温度分析仪301031功能描述…………430蒹于 Labwindow/QⅥ的盧拟仪暴设计1032工作原理着看■舞非罪阜444■p●鲁看要1033设计步骤432110.4设计举例2]高级虚拟模糊热点温度分析仪…………43810.1功能描述…4381042实现原理………………………………4381043设计步骤……43第11章网络化虚拟智能传感器系统……………………4611112网络体系结构与协议……………“4631111网络体系结构……4631112 Lab windows/CⅥ中的主要协议…………4671113 DataSocket技术……472112组建网络化虚拟智能传感器系统的模式…475112,1CS模式…………………………476122B/S模式476网络化虚拟正弦波发生器1131设计原理………1画画D备即命●●看卓自白自↓td.自占即命自咖自·t477113,2仪器功能描述478113.3仪器设计……………4781134编译运行……D。春明中血自■■…487114设计举例2)基于C模式的远程开关控制器的设计………48114.1系统的工作原理4881142仪器功能描述…4881143仪器设计…咖·d日·自·暴■■非罪自咖4●看省·b导···号q48944编译运493参考文献…………95VIll绪论成拟伙器还应数伙器饱发展及持点原书空白第1章蜻忪由于电子技术、计算机技术的高速发属及其在电子测量技术与仪器领域的应用,新的测试理论、测试方法、测试领域以及仪器结均不断出现,电了测量仪器的功能和作用发了质的变化,计算机处于核心地位,计算机软件技术和测试系统更紧密地结合成了个有机整休,仪器的结构概含和设计观点等都发生了突破性的变化。在上述的背景下,出现、仝新概念的仪器—虚拟仪器。本章在介絰有关虚拟仪器的基本概念、组成、发展过程及发展趋势的基础上,重点阐述“软件就是仪器,仪器就足软件”的观点。在本章中,将学到如下内容≥虚拟仪器的基本概念虚拟仪器的组成特点虚拟仗器的设计与实现方法少虚拟仪器的发展过程及发展趋势1.痃担仪欲枇遗虚拟仪器( Virual instrurenent,简称ⅥI)是现代计算机技术和仪器技深层次结合的产物,是当今计算机辅助澳试(CAT)领域的一项重要技术。虚拟仪器是计算机硬件资源、仪器与测控系统硬件资源和虚拟仪器软件资源三者的有效结合。1.11虚戏仪器的基本概念所谓虚拟仪器,就是在以计算机为核心的硬件平台上,由用户设计定义具有虚拟面板,其测试功能由测试软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器模拟传统仪器的控制面板,以多种形式输出检测结果;利用计算机软件实现信号数据的运算、分析和处理;利用O接口设备完成信号的采集、测量与调理,从而完成各种测试功能的一和计算机仪器系统。使用者用鼠标或键盘操作虚拟面板,就如同使用一台专用测量仪器虚拟仪器的“虚拟”两字主要包含以下两方面的含义。1.虛拟仪器的面板是虚拟的虚拟仪器面板上的各种“控件”与传统仪器面板上的各种器付所元成的功能是相同約,并扫各种开关、按钮、显示器等实现仪器电源的“通”或“断暴于 Labwindow/Ⅵ的姒仪器谩计被测信号“输入通道"、“放大倍数”等参数设置,测量结果的“数值显示或“波形显示”等。传统仪器面板上的器件都是“实物”,而且是由“手动”和“触摸”进行探作的,而虚拟仪器面板控件是外形与实物相像的“图标”个控科的j”“断”、“放大”等动作是通过用户对计算机鼠标或键益的操作米完成!。因此,设计虚拟面板的过程就是在板设计窗口中摆放所需的控件,然后对控件进行合逗的属性投置。2.虍拟仪器则量功能是由软件编程来实现的在以计算机为核心组成的硬件平台支持,通过软件编程设计来实现仪器的功能,可以通过组合不同的测试功能软性模块来实现多种测试功能,因此,在硬件平台确定后,有“软件就是仪器”的说法,这也体现了测试技术与训算机的深层次结合。1.12虚拟仪器的构成及其分类虚拟仪器通用仪器硬件平台(简称硬什平台)和应用软件两大部分构成。1.虚拟仪器的硬件平台构成拟仪器的硬件平台包括两部分。(1)计算机它-般为-台PC或者工作站,是硬件平台的核心(2)JO接口设备IAO接口设备要完成被测输入信号的采集、放大、愧数转换。不同的总线有其坩应的IO接口硬件设备,如利用PC总线的数据采集卡版(DAQ)GPB总线仪器、VXI总线仪器模块.串口总线仪器等。虚拟仪器的构成方式主要有五种类型,如图1.1所示。≯ PC-DAQ系统PC-DAQ系统是以数据采集板、信号调理电路及计算机为仪器硬件平台组成的插卡式虚拟仪器系统。这种系练用PCI或IA计算机本身的总线将数釆卡板(DAQ〕插入计算机的PCI或ISA插槽中。4
    2020-12-06下载
    积分:1
  • HCIA-AI_V2.0_培训材料.pdf
    【实例简介】HCIA-AI 培训材料,华为人工智能认证工程师培训材料HCIA-AI 2.0
    2021-10-30 00:34:40下载
    积分:1
  • ISO 15031 (1~7全套) OBD最新版
    ISO_15031-1_2010,ISO_15031-2_2010,ISO_15031-3_2016,15031-4_2014,15031-5_2016,15031-6_2015,15031-7_2013
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 106182会员总数
  • 24今日下载