基于FPGA的任意波形发生器的研究与设计详细说明文档
非常详细的资料,介绍了FPGA的DDS技术,文档内有verilog的源代码,可以直接使用,非常适合初学者,快点下载吧。ABSTRACTWith the rapid development of science and technology, electronic measurementtechnique has been widely used in each field such as electronics, machinery, medical,measurement and space. The electronic measurement technology needs to use variousforms of high quality source. So arbitrary waveform generator has very importantpractical significance. The development of arbitrary waveform generator, which basedon Direct Digital Synthesis is discussed in this paper. The generator can produce notonly the conventional waveform such as sine wave, square, triangle wave andsawtooth wave, but the arbitrary waveform, thus this can meet the need of the studyThe work of this paper is as follows:( 1) The domestic and overseas status about the arbitrary waveform generator arediscussed. Clarify the various ways of this synthesis technology of frequency andtechnical comparison, and direct digital frequency synthesis technology is selected toresearch(2)Introduce the hardware design in this system structure and the realization offunction, and a detailed description is given about system components. The singlechip microcomputer is chosen as control module, we use FPga as the coretechnology to realize DDs. The periphery of the circuit design and interfacetechnology is analyzed(3) This paper analyses the working principle, characteristics and technical indexesof the DDS. The design is based on EP1C3T144C8 FPGA chips. Realize DDSfunction through the use of phase accumulator and waveform RoM, and apply enablemodule and the determinant keyboard to present the flexible output of variouswaveform(4) The system test data is given. The reason caused by stray and noise influencingthe spectral purity is analyzedKEY WORDS: Electronic measurement; arbitrary waveform generator; DDS; SCM; FPGA华南师范大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确的方式标明。本人完全意识到此声明的法律结果由本人承担。论文作者签名:日期:29年6月5日学位论文使用授权声明本人完全了解华南师范大学有关收集、保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属华南师范大学。学校有权保留并向国家主管部门或其指定机构送交论文的电子版和纸质版,允许学位论文被检索、查阅和借阅。学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印、数字化或其他复制手段保存、汇编学位论文。(保密的论文在解密后遵守此规定)保密论文注释:本学位论文属于保密范围,在年后解密适用本授权书。非保密论文注释:本学位论文不属于保密范围,适用本授权书论文作者签名:导师签名+1期:10年6月5日日期:22)年b月S日第一章绪论本章主要介绍任意波形发生器的研究意义,以及发展的概况与趋势,并介绍本设计所需要做的软硬件工作,提出设计需要实现的目标。11任意波形发生器的研究意义任意波形发生器( Arbitrary Waveform Generator,AWG)实际上是一种多波型的信号发生器,它不仅能产生正弦波、方波、三角波、斜波和指数波等常规波形,也可以表现出载波调制的多样化,如:产生调频、调幅、调相和脉冲调制等。更可以通过计算机软件实现波形的编辑,从而生成用户所需要的各种任意波形,来满足各种实验研究的需要随着科学技术的飞速发展,电子测量技术被广泛应用在电子、机械、医疗、测控及航天等各个领域。许多电子系统,甚至电子器件只有在一定的电信号作用下,其性能才能显露出来。另一方面,一些电器设备在研究和生产过程中也少不了信号源,它们借助信号源通过测量来鉴定其性能的优劣。所以许多现代电子设备和系统的功能如何,都直接的取决于信号源质量的高低,如何产生高稳定度、高准确度的信号是任意波形发生器研制的关键。因此,信号发生器的表现就至关重要。我国的电子测量技术起步较晚,虽然在一些领域也取得了许多突破性进展,但是与世界先进水平相比,仍然存在着很大的差距。因此提高国内电子测量仪器的研制水平,加强核心技术的研发,对我国电子测量技术的发展,有着非常重要的意义。12任意波形发生器的发展概况最早的信号发生器主要采用RC构成振荡电路。如1928年美国先后生产出的调幅信号发生器与调频信号发生器。20世纪40年代许多国家已经开始研究脉冲信号发生器。1962年美国 Wavetek公司在RC电路的基础上,又推出了函数发生器产品。在60年代初,起源于通信领域的频率合成技术也引用到信号源上,出现了合成信号发生器。自80年代以来人们又将微机技术引入信号源,出现了任意波形发生器。早期的信号发生器主要采用模拟电子技术,电路结构复杂,工艺不够成熟,因此存在着如:漂移较大,输岀波形的幅度稳定性差,模拟器件构成的电路尺寸大、价格贵、功耗大等缺点。80年代以后,现代电子、计算机和信号处理等技术的发展,极大的促进了数字化技术在电子测量仪器的应用。高集成化微处理器的出现,增大了更复杂波形产生与波形稳定的操控性。这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,从而得到各种所需波形。任意波形发生器的实现方案主要有程序控制输出、DMA输出、可变时钟计数器寻址和直接数字频率合成等多种方式2。目前任意波形发生器的研制主要基于DDS(直接数字频率合成)技术,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在通信、测量与电子仪器领域,是实现设备全数字化的一个关键技术。近20年发展迅速,因此许多国家都在进行DDS专用芯片的研制。其中AD公司较为突出,如常见的AD9852、AD9858等产品,现在又推出了性能更强大的AD9952、AD9958、AD9912。其中AD9912包含可提供谐波杂散抑制的辅助低功耗DDS内核,以及48位频率调谐字和内置比较器,具有1GSPS内部时钟速率和高达400MHz直接输出。基于DDS技术的任意波形发生器的发展也同步进行,目前的任意波形发生器的产品结构形式主要有三种:独立仪器结构形式、PC总线插卡式和VⅪI模块式。近几年国际任意波形发生器技术主要发展,除了输出波形频率的提高和更方便的波形输入外,便是与ⅴX资源的结合。在测量和产生复杂的任意波形时,VXI系统资源在这些应用中具有较为明显的优势,尤其对自动测试系统(ATE特别有用。任意波形发生器在商业研发生产中,以 Agilent公司和 Tektronix公司最具有代表性,其任意波形发生器产品已经形成相当的市场占有率,并以优异的产品技术,引领着该领域的发展。如: Agilent公司的N6030A任意波形发生器,它拥有15位的垂直分辨率,125GS/s的采样频率,500MH的输出频率。 Tektronixκ公司更是于2008年推出了性能与速度更为优异的产品:AWG700。采样频率高达24GS/s,也可以做到96GHz有效RF频率输出。不仅如此,该产品还提供了高达10位的垂直分辨率:10位(无标记输出)或8位(带有两个标记输出);高达64M(64:80000点的记录长度,提供了更长的数据流;低至100f分辨率的边沿定时位移控制;16000步序列功能,创建无穷大波形循环、跳转和条件分支。能够生成高速串行信号、多电平信号、为存储设备测试生成信号、宽带RF信号。我国从90年代才开始研制任意波形发生器,比较有代表性的产品有北京普源精电科技有限公司生产的DG3121A,它拥有14位的垂直分辨率、300MSa/的采样率和120MHz的最高频率输出。它是业界第一个具备了数字逻辑输出功能的任意波形发生器。指标在国产的函数/任意波形发生器中处于优势地位,在同类产品中,具有最完备的通信接口,具备RS232,USB,GPIB,LAN。但比起同类产品 Agilent公司的33250A在脉冲频率和频率稳定度等方面还有很大差距。不过普源还是在技术长有不少的创新,比如研制出了业界首台混合信号任意波形发生器。北京凯弘仪器生产的基于DDS的函数发生器就很有特色,由于内置了衰减器,能够实现最小01mVpp的输出和00ldB的分辨率。总体而言,国产任意波形发生器自研制以来取得了巨大的进步,但是在最高采样率,最大输出频率、频率稳定度和准确度等指标上和世界先进水平还存在着较大的差距1.3发展趋势由于电子测量技术及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类日益增多,性能日益提高,尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。现在,许多信号发生器除了带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能外,还带有IEE488或RS232总线,可以和控制计算机及其他测量仪器一起方便地构成自动测试系统。今后,任意波形发生器在较高的取样率,分辨率,记录长度和线性等方面功能会更强,任意波形发生器在射频和无线测试领域将会获得部分市场。当前信号发生器总的趋势是向着宽频率覆盖、高频率精度、多功能、多用途、自动化和智能方向发展14本文的主要工作硬件设计●电源模块电路的设计:各部件工作电压不同,有5V、3.3V、1.5V三种情况,因此须设计出满足各部件正常工作的电源模块。●单片机系统与接口电路设计单片机作为控制模块,实现与上位机信息传递与通信等各种功能,须设计出单片机的控制模块与相关接口电路●D/A转换与滤波电路的设计D/A转换器与滤波是整个电路的后续处理,D/A转换器实现波形的模拟输出、滤波器则选择合适的滤波器完成对信号的修整。●基于FPGA的DDS模块电路的设计FPGA实现DDS功能是整个设计的关键部分,根据相关原理,设计适合的逻辑图。●整机PCB板设计用 PROTEL DXP2004绘制电路板。软件使用●用Kei1C51对单片机传递信息在 Keil c51环境下,编写程序,完成计算机与单片机的通讯,Kei1提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μ vision)将这些部份组合在起,为单片机的使用提供良好的平台。●在 QuartusⅡ下对FGA进行设计在该环境下,实现FPGA的DDS电路设计实现目标波形要求:常规波形(正弦波、方波,三角波等)、任意波形存储深度:1—1024个点幅度分辨率:8位输出频率范围:1Hz1MHz(固定波形)设计目标:不仅可以生成方波、三角波、正弦波等标准波形,而且还要可以生成用户所需要的任意波形,同时输出波形的频率和幅度均可编程控制。4第二章任意波形发生器的理论分析本章首先介绍了频率合成技术的相关情况,并对三种不同形式的频率合成技术进行分析。同时系统的阐述了DDS的基本组成结构、工作原理、工作特点与技术指标,为DDS的构建打下理论基础。21频率合成技术简介频率合成是指从一个高稳定的参考频率,经过各种技术处理,生成一系列稳定的频率输出。频率合成的概念就是由一个或几个参考频率通过一些转换,产生个或多个频率信号的过程。频率合成技术一般分为直接式(DS)、间接式(PLL)和直接数字式(DDS)三种基本形式。早期的频率合成采用直接式的方式,是由一个或多个晶体震荡器经分频、倍频、混频对一个或几个基准频率进行加、减、乘、除运算产生所需要的频率信号,并通过滤波器产出,这是最早的频率合成信号源的方法。目前该方法仍在使用,主要是因为它频率转换速度、相位噪声低,比较容易实现4。但是该方式涉及的合成器体积过于庞大,而且成本较高,结构复杂、产生任意波形的可控性较低间接合成式是基于锁相环的原理,即PLL。它与前者相比,输出频率的稳定度和准确度都有明显的提高,频谱纯度等性能也有较大改善。主要是因为信号源的振荡频率被固定在频率计数器的时基上,也就是说以稳定度高的振荡器为基准。因此,锁相环的输出频率就与基准频率一致,振荡器输出信号和参考信号之间的相位差为固定的常数,而且锁相环的突出优点是能够抑制叠加到输入信号上的噪声。这是直接式频率合成方法所不能达到的。PLL还有体积小、性价比较高等一系列优点。但是PLL技术也有明显的缺点,采取闭环控制,系统的输出频率改变后,重新达到稳定的时间也就比较长,一般为毫秒级,很难满足高频率分辨率与快速转换率同时具备的要求,因此也有明显瑕疵。直接数字频率合成技术从原理上实现了突破。前两种方法都是通过对基准频率进行运算得出,而DDS技术则是从相位的概念进行频率合成。它按一定的相位间隔,将待产生的波形幅度的二进制数据存储于高速存储器作为查找表,用参考频率源(一般为晶体振荡器)作为时钟,用频率控制字决定每次从查找表中取出波形数据的相位间隔,以产生不同的输出频率,对取出的波形数据通过高速D/A转换器来合成出存储在存储器内的波形。直接数字频率合成技术的主要优点是输出相位连续、相对带宽较大、频率分辨率很高、可编程、准确度和稳定度都比较高。DDS技术是利用查表法来产生波形,而通过修改存储在ROM里的数据,就可以产生任意波形。所以它不仅能产生正弦、余弦、方波、三角波和锯齿波等常见波形,而且还可以根据需要利用各种编辑手段,产生传统函数发生器所不能产生的真正意义上的任意波形。DDSDirect Digital Synthesis)的概念首先由美国学者 J.Tiemcy, C. M.Rader和B.Gold在1971年提出,但限于当时的技术和工艺水平,DDS技术仅仅限于理论研究,而没有应用到实际中去。近20年来,随着Ⅴ LSI( Very Large Scale Integration),FPGA( Field ProgrammableGates Array)以及DSP( Digital Signal Processing)的发展,这种结构独特的频率合成技术得到了飞速发展。目前该技术已经被广泛用于接收机本振、信号发生器、通信系统、雷达系统等相关领域中。22DDS的基本原理和工作特点22DDS的基本结构DDS( Direct Digital Synthesis技术设计思想是基于数值计算信号波形的抽样值来实现频率合成的。它包括数字器件与模拟器件两部分,主要有相位累加器ROM波形查询表、数模转换器组成。其基本框图如下。相位累加器波形RoMD/A转换器低通滤波器控制字K输出时钟图21DDS结构框图(1)相位累加器是DDS的核心部分。一般是由数字全加器和数字寄存器组成实现相位累加。如下图所示。N频率挖制字K加法器备存器时钟频率c图22相位累加器结构框图般DDS的累加器都釆用二进制,线性数字信号通过相位累加器实现逐级的累加。假设累加器字长为N,频率控制字为K,控制时钟频率为f,系统在同
- 2020-12-09下载
- 积分:1
三维孔洞储层建模及其地震波场正演模拟
三维孔洞储层建模及其地震波场正演模拟,理论讲解很透彻,分析思路清晰1290地球物理学进展26卷预测结果,即从具有确定性资料的控制点(如井点)解释.同时,利用该过程中产生的6冂井的时深关出发,推测出点间(如井间)确定的、唯一的储层参系,用三角剖分网格建立了速度模型并经过井点校数随机模拟是从一个随机函数z(v)中抽取多个可正,实现了对工区构造框架的时深转换通过以波阻能实现,即人工合成反映Z()空间分布的可供选择抗为协变量的孔隙度属性模拟,借助于三维可视化的、等概率的高分辨率实现技术,我们可以大致看到孔洞储集体的形态、分布、对于该工区来说,三维地震资料分辨率较高,对规模及连通性(图1).根据孔隙度发育情况,我们将孔洞储层已经有一定的反映(常表现为低频、不连续强储层分为孔洞欠发育(致密)、孔洞较发育(较致密)振幅反射).通过岩石物理分析又发现孔洞储层低速、和孔洞发育(较疏松)三种类型并分别设计了各自相低密,常规波阻抗反演能够刈其几何形态、空间接触应的弹性参数,同时以模拟出的孔洞形态约束弹性关系定量表征.因此本文将波阻抗数据体作为协变波正演模拟时孔洞体的空间分布量地震属性纵向等值法),采用确定性的协克里金2波动方程正演模拟原理插值算法,对孔洞储层的物性参数进行了三维建模反演所起到的作用,是通过归一化的测井曲线对碳酸盐岩岩溶风化壳孔洞型油气藏属于一种典原始地震数据进行校正,使数据在空间上得到了有型的、复杂的非均质范畴,可以视为由准均匀介质中效的平衡,从而使孔洞反映的更清楚;二是在地质建呈不规则分布的、大小和形状各异的低速体共同组模过程中通过宏观控制,充分利用空间变量的相关成的非层状储集体.在地震剖面上看到的储集体的性,克服低频模型的不足提高属性模拟的分辨率波应是这些低速体的散射(绕射)波.若利用常规波2【V动方程正演模拟方法所使用的均匀介质中的声波方N()程或弹性波方程,难以得到具有复杂非均匀性的孔cline洞型油气藏的地震波场响应2.因此,本文采用非均匀横向各向同性弹性介质中的弹性波波动方程进l()行正演模拟计算,取z轴为垂直对称轴,它可以表示为如下的一阶方程组:a0awta(λ+2naU)+AW(1)7(1(λ1+21)2+λax图1地质模型孔洞储集体俯视图Fig 1 Top view of the cavity reservoiμ(ain geological model其中:(U(x,z,t),W(x,z,t)是速度向量;B(x,z)是密度ρ=g(x,z)的倒数,或者叫疏度;r建模过程中最大的难点是求取准确的速度场,τ(x,z,t),za=x(x,z;t),n=rn(x,z,t)是应木文首先收集整理了工区内6口探井、评价井的钻力张量.A,P/和A1,p分别为水平和垂直方向上井分层数据及多种测井曲线(电阻率、声波时差、密的拉梅系数;为一新的弹性常数可见,在横向各度、自然伽玛等),对其进行了归一化和环境校正,并向同性弹性介质中,独立的弹性常数有五个,它们是制作了合成记录.通过与井旁地震道对比准确标定密度、在垂直方向上的纵、横波速度及纵、横波的各了前中生界侵蚀顶面(15)石炭系双峰灰岩顶面向异性系数,即:(T5。),中下奥陶统顶面(T7)、下奥陶统蓬莱坝组顶面(T7),它们都是区域性的波峰反射在此基础+2uL, Vsi-A pL上采用25m*25m测线密度对该区块6.25km2的3U地震数据体T5°、T5、T74、T78层位进行了精细√λ1+2,CSV闵小刚,等:三维孔洞储层建模其地震波场演模拟1291在具体的有限差分解法上,除了规则网格外,非均匀介质模型的弹性波动方程正演模拟特别是种较为先进的交错网格(图2)最早由 madariaga提当每一个波长中的网格点数多于10个时, Levander出, Virtex在模拟各向同性介质屮SH波和P(1988)2的结果显示,网格色散与网格各向异性均Sⅴ波时也使用了这种差分网格,其精度为o(△2十可忽略不计△x2),在不增加计算工作量和存储容间的前提下,假设U,W分别为介质在x,z两个方向上的速和常规差分网格相比局部精度提高了4倍,且收敛度分量的离散量,R,T,H分别为rxr=和τx的离速度也较快. Levander2又将这种差分网格的精度散量,Lo,M,L1,M1和M2分别为y,kM,A⊥?P1和提高到o(△t2+△x). Crase2则发展了精度可达任g的离散量在(1)式中,各导数项均用中心差分来意阶的高阶交错网格法,但其计算量和内存要求比代替,在如图2所示的一个交错网格中,U,B在节低阶有限差分法大幅度增加.本文使用的是 Virieux点1处计算;W,B在节点2处计算;R,T,M,L,(1986)1的交错网格差分公式,其差分精度为和M1,L1在节点3处计算;H,M2在节点4处计算(△2+△x2), Ikelle l t和 Yung$ K(199)21说这样()式离散为4明该算法可以糈确、稳定地应用于任总复杂变化的=U+B,(R年,-R…)十B,(I1+-H),wH,n-v++B++△(r}一rn)+By2(T+-+),ry=对++(n+2M4)+,△m+-RW(2)+T+,;+(L1+2M1)△tW+U2)+M2△t鲁←z以将震源函数直接赋在rx和n的节点上来模拟震源,即Soure,t)=R(t)t_(source_x, soure_x, t)=R(t.此外,在震源没有激发之前地下介质内部所质点都是静止的,包括质点振动速度为零和所受应力为零.因此,初始条件为图2一个交错树格Fig. 2 A st0,r(x,z,t)=0(t≤0)(3)对于自山表面边界条件,本文采用了模型空间其中,上标k为时间t的离散量,下标i,分别为x的上部加空气的条件,然后再采用吸收边界条件把和z的离散量.△,△x,△z分别为t,x,z的步长空气上边界的弹性波吸收掉,对于空气的下界面,则鉴于 Ricker子波对地震波的分辨率较其它子作正常的分界面来认识,从而获得和实际应用中波函数高,因此,震源选用 Ricker子波,其形式为所采用的地表放炮、地表接收达到一致的效果.R(t)=[1-2Lmf(t-to)] Jexp[-(rf(E to))2]有限差分法在求解波动方程时,会产生不期望式中f表示子波的主频,t为子波持续时间,t为f的数值频散或称网格频散,导致数值模拟结果分辨的函数,在模拟地下激发的地震波时,有限差分交错辛降低2所谓数值频散实质上是一种因离散化求网格中的正应力x和x=是在同一节点上赋值的,解波动方程而产生的伪波动,这种频散既不同于波而vr和vn在节点处的数值并没有参与计算,因此可动方程本身引起的频散,也不同于因波传播的速度1292地球物理学进展26卷频率和角度变化而引起的频散,它是有限差分方法果我们在这里仅分为三种类型:孔涧欠发育(致求解波动方程时所固有的本质特征,无法避免.为了密)、孔洞较发育(较致密)和孔洞发育〔较疏松).消除这种数值频散,前人进行了大量研究,他们的结论是基木一致的,即为了消除数值频散,在使用二阶表1地层框架内各层物性参数有限差分方法时,每个功率对应的波长至少必须使Table I The properties ot each layer用11个网格点,面四阶有限差分则可用二阶差分网in stratigraphie framewor格点数的一半.木文采用的稳定性条件,即计算稳定p(nu/s) v(m/s) (kg/m3)的离散参数区域为151:r4G界面2500三叠系)以Lmd2m≤1(2m-1)fT50界面下石炭系顶)~T46l730≤Ld2m≤T56界面(2m-1)!(巴楚组顶)~T5023102350其中,T74界囿(下奥陶系顶)~T56±8002470T78界面(蓬芠坝组颠)灬T7460002650界面以3702此外,在做波动方程的模型计算时,由于只能在对于试验工区的每条线,其长度均为1625m个有限区域进行,而弹性波在其计算边界上能量为了侏证该区域内均为满叠、孔洞的绕射波收敛以衰诚并不为零,从而产生很强的边界反射,这是模型及边界吸收较为干净,我们在模型的左边延长了计算时所不希望的,需要做人工吸收戌衰减处理,计1200m,右边延长了1575m(延长部分的地层接触算吸收边界的方法有许多种,一般情况下网格周围系并不代表真实情况),即模型总长度为1、4km,的耗散采用质点的速度和应力值乘上一个小于1深度范围为4000~6500m每条线均采用了同样的的因子来平滑的衰减;另种可能性是在网格周围观测系统,具体为:采用零相位对称雷克子波作为震使用低Q值来实现吸收作用,但是后者的吸收效果源(主频40玎z),单边放炮(共20炮,每炮128个检不如前者的吸收效果好,因此本文采用的是第一种波器接收)炮间距160m,检波器间距20m,8次叠方法,具体实珧时釆用了〔 eran等的吸收边界条加,最小偏移距0m,最大偏移距2540m,记录长件实现边界吸收1.6s,Δt=2ms,第一炮的坐标位置为(-1200,0)exp[-a2(I-i)2],1≤i≤1.基于差分稳定条件,取模型中最小介质速度2500m/s其中,I为给定的吸收边界带总节点数;i为吸收边为参考,得到的计算参数为:网格剖分间隔3m界内的节点编号;a为衰减系数,其值的选定与1的3m,时间延拓步长为0.27ms,每个波长(62.5m)大小密切相关,且对吸收效果的影响很大本文中Ⅰ内有20.8个网格.我们一共对33条线进行了正演取为40(即围绕计算区域,再向外设置宽度为40个模拟,图3展示了较为典型的 inline2585线(位于研网格的条形吸收区域)a=0.305/40,i取从0~40究工区的中心部位,地层接触关系以及孔洞体的分节点号.在条形吸收区域中的每个网格结点处,对全布相对比较复杂),从中可以大致看出二维正演模拟部的5个波场量(U,W,R,T,H),在每计算一个时的普遍情况与孔洞体波场响应特征的一般规律问步长后,都做少量的波场减表2展示∫该条线上各孔洞体的几何及物性参3模型计算数,其中④号属于欠发育(充填致密物)类型,①③⑥号属于较发育(充填较致密物)类型,②⑤号属于发在正演之前,我们统计了工区的速度、密度资育(充填较疏松物)类型.此外,建模过程中,我们还料,为了简化模型,并使得孔洞体的地震响应特征更考虑了线与线之间地层起伏渐变、孔洞大小渐变孔具有针对性,我们采用了背景为常速介质、蜜度参数洞物性参数渐变的过程,即所有建模因素都渐变由( arner公式计算的思路(表1).对于孔洞储集的而不是突变,最终保证了三维地震数据体的连体,根据钴井揭示和前面提到的孔隙度属性模拟结续性4期闵小刚,等;三维孔洞储层建模及其地震波场正演模拟1293表2各孔洞储集体的几何及其物性参数最大振幅,且绕射曲率与反射曲率相同,表明二者具Table 2 The geometry and propcrty parameters有不同的传播速度;每个绕射波可分为左右、上下f each cavity reservoir正、反向绕射分支,正向绕射分攴的相位与反射P孔润体尚度宽度vVP波相同,反向绕射分支的相位反转180°,与反射P(m)(m)(m/s)(m/s)(kg/m3)充填物屮心距界面(m)波的相反17396500029002503较致密105弹性波正演模拟生成的炮域合成记录被导人10113480027822470较疏松6FOCUS软件进行常规处理,包括速度谱拾取、动82784500029002500较致密85校、切除、增益、滤波、叠加、偏移和变面积、变密度显①575520030222530致密示等.由于在观测系统中只设计了8次覆盖,为了增⑤18115480027822470较疏松104加速度谱拾取精度,本文采用了由相邻的7个CDP2714850029002500较致密86道集混合构成一个超道集的办法,隔10个CDP拾图4是该模型在590ms时的波场快照,其波场取一个速度文件,并在拾取前先作常规NMO校正清晰,网格频散小,边界吸收较干净这表明,在求解切除,使得原始道集记录能量更强、信噪比史高二维弹性波动方程时,将差分解法和交错网格技术图5、图6分别是TK610井、TK623井所在位置处相结合,通过较好地使用吸收边界和稳定性条件可CDP道集记录及其速度谱,从图中可见各个反射界以显著削弱数值频散,有效地提扃计算精度.同时面的同相轴清晰可辨,对应的能量团集中,而在合成在保证一定的精度前提下,可以采用铰大的空间网记录上T7界面下孔洞所在位置处都有一明显的格间距,提高计算效率.从图巾还可看出,孔洞绕射同相轴,能量团也比较集中,由于TK610升比波和反射波在绕射点处相切,在切点处绕射波具有TK623井孔洞储集体更为发育(尽管二者振幅相1200-80004008001200160020002400280040004505500图3主测线2585地质模型Fig 3 Geclcgical model ol inline258-12004004008001200160045000.10.3图4主测线2585在590ms时波场快照Fig. Snapshot of wave field at 590ms in inlinc25851294地球物理学进展26卷Sg224-230CDP49 SE QNO250030003500400045000.240.60.60.80.8TE1.01. 01.21.2141.4图5TK610井所在位置处CDP道集记录及其速度谱ig. 5 The CDP gather and velocity spectrum at well TK610Sgl58-1640.2ONO250030003500400045000.0.40.60.60.8081.0:1.01212623(2565图6TK623井所在位置处CDP道集记录及共速度谱Fig 6 The CDP gather and velocity spectrum at well TK623当,在地质模型设计时均认为是充填较疏松物,但相消),使得T7界面断断续续,并在该界面下出现TK610井比TK623井在目的层段的厚度要大,横些“短反射”通过仔细分析,我们发现“短反射”中向展布范围也更宽测试产能更高),在合成记录上较强者出现的时间,与孔洞位置相对应.从该模型的孔洞对应的同相轴振幅更强、波形更连续,速度谱上偏移剖面上(图b)可以看到,所有的孔洞体均得到能量团也更强、更集中比铰好的偏移成像,并表现为负正负三个相位的图7是处理完后的叠加和偏移剖面.从叠加剖波形.但鉴于反射波地震勘探的纵向分辨率(大于面上(图a)可以比较清楚的看到孔洞体顶、底的两1/4波长),所有能检测出的孔洞或孔洞组合在叠加组强反射,但是二者之间出现具有绕射特征的弱波剖面上都叠合在T74界面下第一个波峰轴上,在偏代替了成层的背景,这些绕射波的相互下涉(相长、移剖而上都体现在T7界面下第一个黑椭圆体上,4期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1295601001401802202603003401001401802202603003400.00.00.20.2040.40.60.60.81014露9.926c+089.926e1081022e+091022e+09图?主测线2585对应的叠加剖而(a)和偏移剖面(b)Fig. 7 The stacking section (a) and migration section (b) of inline2585至」其下的“串珠”是孔洞的假象(孔洞组合与围岩(b)之间的多次波及绕射波经偏移归位后形成较强短反L2560L2580L2600射).由于T74界面反射波与沿纵横向有一定分布的孔洞(比较明显的是①、⑤号)的绕射波叠加,使得30001300040孔洞所在位置处T74界面反射波能量变弱,而孔洞底部与下覆围岩之间的正极性反射由于受T7界200600面反射波的负值性续至波叠加,也变得较弱.此外,B40080在构造高点上(④⑥号孔洞体所在位置,④号更为明显),由于孔洞引起的绕射与隆起引起的回转波的相6003600100互丁涉,T56和T7界面不连续,甚至在其间出现空白反射,而实际资料也有这种情况.这说明,对于塔3800800200和油田碳酸盐岩孔洞储集体这类特殊的油气储层来400040001400400说,在解释时遇到层位问断时,不能轻易地开断层,而应该综合考虑构造、孔洞绕射等地震波场特征.这图8联络测线2795实际剖面(a)和正演剖面(b)对比也是塔河油出勘探开发实践中发现“表层弱反射、内Fig 8 Comparison of the actual section (a) and幕强反射”地震特征对应有利储层的一个佐证forward modeling section (b)in crossline2795依据以上思路与工作流程,我们得到了33条沿主测线方向的二维偏移剖面,在并成三维体之前,为而正演模拟釆取的是8次叠加、道间距10m),正演了尽量消除线与线之问因地层起伏造成的不闭合,剖面较好的反映了实际情况.这不仅体现在层位的我们采取先把33条线的速度文件并成三维体,整体形态、分布比较相似(由于速度取了平均,各层的厚平滑后两用每条线对应的、平滑后的速度对其原始度不一致,但不影响我们的主要的,即对孔洞体地共中心点数据进行动校、叠加、偏移的办法,得到33震响应特征的分析),更重要的是,我们所设计的孔条新的二维偏移剖面,再并成一新的三维体,此外,泂体,其位置、形状规模、振幅强弱均与实际地震资由于正演模拟数据体线间距为50m,道间距为料具有相当好的对应关系,这表明我们在止演模拟10m,其空间采样率比实际资料低,本文编制了相和处理时的设计思想和参数选取原则是合理的,这应的算法在频率域对其进行插值,使线间距加密到结果也为我们进行后续工作提供了比较好的数据25m图8是联络测线2795在时间域的实际剖面源由于实质上是2.5维,不是基于面元的真三维,(a)和正演剖面(b)对比,排除二者在采集时的一些所以沿联络测线的剖面上同相轴有抖动现象,这是差异(如实际三维采集资料为24次叠加道间距25m,不可避免的)1296地球物理学进展26卷4结论与建议2]谢桂生,刘洪,赵连功,伪谱法地震波正演模拟的多线程并行计算[冂.地球物理学进展,2005,20(1);17~23.本文从三维角度,建立了与实际资料比较吻合Xie G S, Liu H, Zhao L G. Parallel Algorit hm based on the的孔洞储层模型,并进行了弹性波正演模拟,总结了multithread Technique for pseudospectal modeling of seismic地震响应规律,主要结论如下:wave[J]. Progress in Geophysics(in Chinese), 2005, 20(1)1)结合地震资料建立储层地质模型能够有效[3]刘财,张智,邯志刚,等.线性粘弹体屮地震渡场伪谱法模拟地降低储层模型的不确定性,提高建模精度.同时利技术[门].地球物理学进展。:005,20(3),640~644,用协克里金技术,用波阻抗反演的确定性信息约束Liu C, Zhang Z, Shao Z G, et aL. Pseudo-spectral forward储层的平面非均质性,可以实现孔隙度属性的确定modeling nf seismic wave in linear viscoelasic solid [J]P1性建模),2005,20(3):640~644.4」张智,刘财,邵志刚,伪谱法在常Q粘弹介质地震彼场模拟(2)在求解二维弹性波动方程时,将差分解法和中的应用效果[].地球物理学进展,2005,20(4):945交错网格技术相结合,通过较好地使用吸收边界和949,稳定性条件可以显著削弱数值频散,有效地提高计Zhang Z, Liu C, Shao G. The application of pseudo-spectral算精度.同时,在保证一定的精度前提下,可以采用forward modeling of seismic wave field in constant Q较大的空间网格间距,提高计算效率该方法具有广viscoelastic medium [J]. Progress in Geophysics, 2005,20(4)945~949泛的适用性5]盖良国,马在出,曹景忠,等.一阶弹性波方程交错网格高阶(3)孔洞储集体在偏移剖面上表现为负-正-负差分解法[冂].地球物理学报,200,43(3):411-~419三个相位的波形,但只能确定奥陶系风化面下第Dong LG, Maz T, Cao j Z, et al. A staggered-grid high个负相位是孔洞的发育位置,其下的“串珠”是孔洞order difference method of one-order elastic wave equation]的很象.风化面反射波与沿纵横向有一定分布的孔Chinese J. Geophys. (in Chinese),2000,43(3):411-419洞体的绕射波叠加,使得孔洞所在位置处风化面反[6]董艮国,马在田,曹景忠,一阶弹性波方程交错网格高阶差分解法稳定性研究[门].地球物理学报,200,43(6):856~射能量变弱,而孔洞底部与下覆闱岩之间的正极性反射由于受风化面透射波的负值性续至波叠加,也Dong L G, Ma Z T, Cao J Z. a study on stability of the变得较弱.该结论对于实际地震资料处理、解释以及staggcred-grid high-order difference method of first-order储层预测烃类检测具有普遍的指导意义elastic wave equation. Chinese J. Gcophys. in Chinese)2000。43(6);856~864本文不足之处主要有三点「7]萤良国.复杂地表条件下地震波传播数值模找1.勘探地球(1)在三维孔隙度建模时采用的是常规阻抗信物理进展,2005,28(3);187~194息(约束稀坑脉冲反演),其纵向分辨率不够(只能分Dong L G. Numerical simulation of seismic wave propagation辨1/4波长以上的孔洞储集体),在后续工作中将尝under complex near surface conditions [J]. Progress in试使用地质统计学反演的阻抗体来约束建模以大幅Exploration Geophysics(in Chinese), 2005, 28(3):187--194提高纵向分辨能力[8奚先,姚姚,二维随机介质及波动方程正演模拟[.石油地球物理劫探,2001,36(5):546-552(2)在弹性波正演模拟时采用的是2.5维思想XiX, Yao Y. 2D random media and wavc cquation forward口前正在研制全三维算法有望更逼真的还原孔洞储modeling [J]. Oil Geophysical Prospecting in Chinese集体的真实地下情况001,35(5);546~5523)考虑到缝的各向异性更为复杂,本文尚未涉9]奚先,姚姚,二维粘弹性随机介质中的波场特征分析[刀地及,对于碳酸盐岩中这类油气运移的重要通道,将在球物埋学进展,2004,19(3):608~615今后的工作中进一步研究Xi x, Yao Y. The analysis of the wave field characteristics in2-D viscoelastic random medium LJ. Progress in Geophysics参考文献( References):hinese),2004,19(3):608~[10]奚先,姚姚,二维横各向同性弹性随机介质中的波场特征1]刘文岭.大庆宋芳屯油田芳2区块地震与地质资料综合储层J.地球物理学进展,2004,19(4):924~932地质建模研究(博土论文儿D1.北京:中国地质大学,2002Xi x, Yao Y. The wave field characteristics of 2-DLiu W I. A Study on Reservoir Geological Modeling withclo].ESeismic and Well-log Data in Fang 2 Area of DaqingGeophysics(in Chinese), 2004,19(4):924-932ongfangtun Oil Field (doctor dissertation)(in Chi[111吴永国,贺振华,黄德济.串珠状溶涧模型介质波动方程正Beijing: CUG, 2002.演与偏移[.地球物理学进展,2008,23(2);539~5444期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1297Wu Y G, He Z H, Huang d J. Wave equation forward[19]肖玉茹,何峰煜,孙义梅,等,古洞穴型碳酸盐岩储层特征modeling and migration for heads-shaped corroded cave model研究一以塔河油田奥陶系古洞穴为例匚门。石油与天然气地EJ]. Progress in Geophysics(in Chinese), 2008, 23(2): 539质,200324(1):71~80.Xiao YR, He f Y, Sun Y M, et al. Reservoir charactetistics12]股文,印兴耀,吴国忧.高特度频率域弹性波方程有限差分of paleocave carhonates-a casc study of Ordovician paleocave方法及波场模拟[」.地球物理学报,2006,49(2):561in tahe oilfield, Tarim basin UJ]. Oil Gas Geology(inChinese),2003:24(1):71-80Yinw, YinXi,WuGC. The method of finite difference of[20]姚蟋,唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检high precision elastic wave equations in the frequcncy domain测性的理论研究[门.石油地球物理勘探,2003,38(6):623and wave-field simulation [J. Chinese J, Geophys.629Chinese),2006,49(2):561~568.Yao Y, Tang W B. Theoretical study of detectable cavern[13]马贵,土尚旭,宋建勇.频率域波动方程正演中的多网格Fractured reservoir in weathered Karst of dccp carbonatite迭代箅法[门].石油地球物理勘探,2010,45(1):15[J]. Oil Geophysical Prospecting(in Chinese), 2003,38(6):Ma ZG, Wang S X. Sun J Y. Multigrid iterative algorithm in623~629,domain wave equation forward modeling [J]. Oil [21] Levander A R. Fourth-order finite difference P-SvGeophysical Prospecting(in Chinese ) 2010, 45(1): 1-5seismograms []. Geophysics, 1988, 53(11): 25-36.[14]张金海,王卫民,赵连锋,等.傅里叶有限差分法三维波动[22] Crase e. Iligh- order( space and timc) finite-difference方程正演模拟[.地球物理学报,2007,50(6):1854A, In: 60th SEG Annual1862C].1990:987~991.Zhang j H, Wang W M, Zhao L F, et aL. Modeling 3-D [23] IkelleL T, Yung SK, Daube F. 2-D random media withscalar waves using the Fourier finite-difference method.ellipsoidal autocorrelation function [J]. Geophysics, 199350(6):1854[24]奚先.随机介质模型的构造及其波场模拟(博土论文)[D][15] Qin Z, Lt武汉:中国地质mproved NPML absorbing boundary condition in elastic waveXix. Construction and scismic wave field modeling ofmodeling [J]. Applied Geophysics, 2009. 6(2): 113-121random medium model doctor dissertation ) in Chinese)[16][D].Wwave equation [J. Geophysics, 1986, 51(1): 54-61[25]吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[17] Virieux J. P-Sv wave propagation in heterogeneous mediaLJ.地球物理学进展,2005,20(1):58-65velocity-strcss finite-difference methud LJ]. GeophysicsWu GC, Wang H Z. Analysis of numerical dispersion in1986,V51;889~901.wave-field simulation [J]. Progress in GreaphysiEs ( in18] Igel H, Riollet B. Mora P. Accuracy of staggered 3-D finiteChinese),2005,20(1):58~65difference grids for anisotropie wave propagation [J]. 62th [26] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflectingAnn, Internat, Mtg, Soc. ExpL. Geophys, Expboundary condition for discrete acoustic and elastic- wav1992,1244~1246.equation []. Gcophysics, 1985, 50(4): 705-708.
- 2021-05-06下载
- 积分:1