登录
首页 » Others » siemens 840d-sl高级编程手册

siemens 840d-sl高级编程手册

于 2020-12-08 发布
0 415
下载积分: 1 下载次数: 1

代码说明:

siemens 840d-sl高级编程手册,系统编程介绍,特殊指令用法,示例前言S| NUMERIK文献SINUMERIK文档分为以下几个类别·一般文献用户文献制造商/维修文档其它信息访问链接Www.siemens.com/motioncontrolldocu可获取关于以下主题的信息:订购文档/查看印刷品一览进入下载文档的链接使用在线文档(查找搜索手册/信息)如果您对技术文档有疑问(例如:建议或修改),请发送一份电子邯件到下列地址documotioncontrol@siemens.com我的文档管理器(MDM)点击下面的链接,您可以在西门子文档内容的基础上创建自己的机床文档。www.siemens.com/mdm培训提供的培训课程有:www.siemenscom/sitrainS|TRAN-西门子自动化产品、系统以及解决方案的培训www.siemens.com/sinutrainSinu train-S| NUMERIK培训软件常见问题常见问题(FAQ)请点击“产品支持",然后点击右侧的“支持http:/support.automationsiemens.comSINUMERIKS| NUMERIK的信息请点击:工作准备部分编程手册09/2011,6Fc53982BP40-2RA0前www.siemens.com/sinumerik目标客户该手册供以下人员使用:编程人员设计人员使用利用该编程手册目标用户可以设计程序和软件界面、写入、测试和消除故障标准功能范畴在该编程说明中描述∫标准的功能范畴。机床制造商增添或者更改的功能,由机床制造商资料进行说明。控制系统有可能执行本文献中未描述的某些功能。但是这并不意味着在提供系统时必须带有这些功能,或者为其提供有关的维修服务。同样,因为只是概要,所以该文献不包括仝部类型产品的所有详细信息,也无法考虑到安装运行和维修中可能出现的各种情况技术支持各个国家的技术支持电话请访问以下网址http://www.siemens.com/automation/service&support结构与内容的相关信息编程手册“基本原理”和“工作准备”。关于NC编程的说明分列在两木手册中:1.基本原理编程手册‘基本原理”供机床专业操作供使用,需要冇相应的钻削、铣削和车削加工知识。这里也利用一些简单的编程举例,说明常见的指令和语句(符合D|N66025)2.工作准备部分编程手册“工作准备部分"供熟悉所有编程方法的工艺人员使用。 SINUMERκK控制系统可利用一种专用编程语言对复杂的工件程序(例如自由成形曲面,通道坐标,…)进行编程,并且可减轻工艺人员编程的负担工作准备部分编程于册,09/2011,6FC53982BP40-2RA0Nc语言的可用性本手册中所描述的全部NC话言都可用于 SINUMERIK840Ds。有关S| NUMERIK828D的可用性见表格“指令:在 SINUMERIK828D上的可用性[页796]工作准备部分编程于册,O9/2011,6FC5398-2BP40-2RA05前工作准备部分6编程于册,09/2011,6FC53982BP40-2RA0目录前言……1灵活的NC编程.17变量171.1.1变量的一般信息171.12系统变量1811.3预定义用户变量:计算参数(R)201.1.4预定义用户变量:链接变量221.1.5定义用户变量(DEF)241.16系统变量,用户变量和NC语言指令的重新定义( REDEF)291.1.7属性:初始化值.321.18属性:极限值(LL,UL)35119属性:物理单位(PHU)361110属性:存取权限(APR,APW,APRP,APWP,APRB,APWB)1.1.11可定义和可重新定义的属性一览441.1.12定义和初始化数组变量(DEF,SET,REP)451.1.13定义和初始化数组变量(DEF,SET,REP):其它信息491.1.14数据类型画画B1面面∴511.2间接编程531.2.1间接编程地址531.2.2间接编程G代码1画551.2.3间接编程位置属性(GP∴561.2.4间接编程零件程序行( EXECSTR|NG)59运算功能601.4比较运算和逻辑运算·.·····,,,,,,,,,631.5比较错误的精确度修正( TRUNC)…...……651.6参见“最大变量、最小变量和变量Ⅸ域( MINVAL, MAXVAL, BOUND67运算的优先级691.8可能有的类型转换19字符串运算711.91类型转换到字符串( AXSTR|NG)711.9.2从字符串( NUMBER,| SNUMBER, AXNAME)类型转换.721.93字符串的链接(

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB金融建模资料合集
    MATLAB金融建模资料合集 金融时间序列分析
    2020-12-11下载
    积分:1
  • stm32_mcu+rda5876_bluetooth
    天喻 stm32的mcu+rda5876蓝牙做的银行支付key,刷卡加密。
    2021-05-07下载
    积分:1
  • 双馈风机simulink仿真模型
    双馈风力发电机simulink仿真模型,实现了最大风能跟踪,测试了低电压穿越能力,网侧和转子侧分别调试,风力变化时动态响应快,
    2020-11-28下载
    积分:1
  • VC++(MFC)实现FTP功能(源代码)
    用VC++实现FTP文件的上传,下载。FTP服务器支持Windows,Unix.
    2020-12-02下载
    积分:1
  • C51超声波测距序-基于芯片CX20106A
    /* CX20106A 超声波发送与接受程序 40KHz脉冲由单AT89S52单片机P1.0口送出,由P3.2(INT0)采用中断方式接收。 定时器0,定时器1中断方式工作,T1为8位自动重装模式(定时12.5us),T0为16位定时器(定时约65ms) 超声波接受采用外部中断INT0,接受到返回脉冲后,在外部中断程序中计算距离。 65ms超声波传播距离约65×10^(-3) × 340m/s =22.1m,距离足够了,远超CX20106A的测量范围。 40KHz对应波周期T=1/40KHz =25us,方波高占空比50%,高低电平宽度分别占0.5T=12.5us。 定
    2020-12-11下载
    积分:1
  • 凸优化在信号处理与通信中的应用Convex Optimization in Signal Processing and Communications
    凸优化理论在信号处理以及通信系统中的应用 比较经典的通信系统凸优化入门教程ContentsList of contributorspage IxPrefaceAutomatic code generation for real- time convex optimizationJacob Mattingley and stephen Boyd1.1 Introduction1.2 Solvers and specification languages61. 3 Examples121. 4 Algorithm considerations1.5 Code generation261.6 CVXMOD: a preliminary implementation281.7 Numerical examples291. 8 Summary, conclusions, and implicationsAcknowledgments35ReferencesGradient-based algorithms with applications to signal-recoveryproblemsAmir beck and marc teboulle2.1 Introduction422.2 The general optimization model432.3 Building gradient-based schemes462. 4 Convergence results for the proximal-gradient method2.5 A fast proximal-gradient method2.6 Algorithms for l1-based regularization problems672.7 TV-based restoration problems2. 8 The source-localization problem772.9 Bibliographic notes83References85ContentsGraphical models of autoregressive processes89Jitkomut Songsiri, Joachim Dahl, and Lieven Vandenberghe3.1 Introduction893.2 Autoregressive processes923.3 Autoregressive graphical models983. 4 Numerical examples1043.5 Conclusion113Acknowledgments114References114SDP relaxation of homogeneous quadratic optimization: approximationbounds and applicationsZhi-Quan Luo and Tsung-Hui Chang4.1 Introduction1174.2 Nonconvex QCQPs and sDP relaxation1184.3 SDP relaxation for separable homogeneous QCQPs1234.4 SDP relaxation for maximization homogeneous QCQPs1374.5 SDP relaxation for fractional QCQPs1434.6 More applications of SDP relaxation1564.7 Summary and discussion161Acknowledgments162References162Probabilistic analysis of semidefinite relaxation detectors for multiple-input,multiple-output systems166Anthony Man-Cho So and Yinyu Ye5.1 Introduction1665.2 Problem formulation1695.3 Analysis of the SDr detector for the MPsK constellations1725.4 Extension to the Qam constellations1795.5 Concluding remarks182Acknowledgments182References189Semidefinite programming matrix decomposition, and radar code design192Yongwei Huang, Antonio De Maio, and Shuzhong Zhang6.1 Introduction and notation1926.2 Matrix rank-1 decomposition1946.3 Semidefinite programming2006.4 Quadratically constrained quadratic programming andts sdp relaxation201Contents6.5 Polynomially solvable QCQP problems2036.6 The radar code-design problem2086.7 Performance measures for code design2116.8 Optimal code design2146.9 Performance analysis2186.10 Conclusions223References226Convex analysis for non-negative blind source separation withapplication in imaging22Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi, and Yue Wang7.1 Introduction2297.2 Problem statement2317.3 Review of some concepts in convex analysis2367.4 Non-negative, blind source-Separation criterion via CAMNS2387.5 Systematic linear-programming method for CAMNS2457.6 Alternating volume-maximization heuristics for CAMNS2487.7 Numerical results2527.8 Summary and discussion257Acknowledgments263References263Optimization techniques in modern sampling theory266Tomer Michaeli and yonina c. eldar8.1 Introduction2668.2 Notation and mathematical preliminaries2688.3 Sampling and reconstruction setup2708.4 Optimization methods2788.5 Subspace priors2808.6 Smoothness priors2908.7 Comparison of the various scenarios3008.8 Sampling with noise3028. 9 Conclusions310Acknowledgments311References311Robust broadband adaptive beamforming using convex optimizationMichael Rubsamen, Amr El-Keyi, Alex B Gershman, and Thia Kirubarajan9.1 Introduction3159.2 Background3179.3 Robust broadband beamformers3219.4 Simulations330Contents9.5 Conclusions337Acknowledgments337References337Cooperative distributed multi-agent optimization340Angelia Nedic and asuman ozdaglar10.1 Introduction and motivation34010.2 Distributed-optimization methods using dual decomposition34310.3 Distributed-optimization methods using consensus algorithms35810.4 Extensions37210.5 Future work37810.6 Conclusions38010.7 Problems381References384Competitive optimization of cognitive radio MIMO systems via game theory387Gesualso Scutari, Daniel P Palomar, and Sergio Barbarossa11.1 Introduction and motivation38711.2 Strategic non-cooperative games: basic solution concepts and algorithms 39311.3 Opportunistic communications over unlicensed bands411.4 Opportunistic communications under individual-interferenceconstraints4151.5 Opportunistic communications under global-interference constraints43111.6 Conclusions438Ackgment439References43912Nash equilibria: the variational approach443Francisco Facchinei and Jong-Shi Pang12.1 Introduction44312.2 The Nash-equilibrium problem4412. 3 EXI45512.4 Uniqueness theory46612.5 Sensitivity analysis47212.6 Iterative algorithms47812.7 A communication game483Acknowledgments490References491Afterword494Index49ContributorsSergio BarbarossaYonina c, eldarUniversity of rome-La SapienzaTechnion-Israel Institute of TechnologyHaifaIsraelAmir beckTechnion-Israel instituteAmr El-Keyiof TechnologyAlexandra universityHaifEgyptIsraelFrancisco facchiniStephen boydUniversity of rome La sapienzaStanford UniversityRomeCaliforniaItalyUSAAlex b, gershmanTsung-Han ChanDarmstadt University of TechnologyNational Tsing Hua UniversityDarmstadtHsinchuGermanyTaiwanYongwei HuangTsung-Hui ChangHong Kong university of scienceNational Tsing Hua Universityand TechnologyHsinchuHong KongTaiwanThia KirubarajanChong-Yung chiMcMaster UniversityNational Tsing Hua UniversityHamilton ontarioHsinchuCanadaTaiwanZhi-Quan LuoJoachim dahlUniversity of minnesotaanybody Technology A/sMinneapolisDenmarkUSAList of contributorsWing-Kin MaMichael rebsamenChinese University of Hong KongDarmstadt UniversityHong KonTechnologyDarmstadtAntonio de maioGermanyUniversita degli studi di napoliFederico iiGesualdo scutariNaplesHong Kong University of Sciencealyand TechnologyHong KongJacob MattingleyAnthony Man-Cho SoStanford UniversityChinese University of Hong KongCaliforniaHong KongUSAJitkomut songsinTomer michaeliUniversity of californiaTechnion-Israel instituteLoS Angeles. CaliforniaogyUSAHaifaMarc teboulleTel-Aviv UniversityAngelia NedicTel-AvUniversity of Illinois atIsraelUrbana-ChampaignInoSLieven VandenbergheUSAUniversity of CaliforniaLos Angeles, CaliforniaUSAAsuman OzdaglarMassachusetts Institute of TechnologyYue WangBoston massachusettsVirginia Polytechnic InstituteUSAand State UniversityArlingtonDaniel p palomarUSAHong Kong University ofScience and TechnologyYinyu YeHong KongStanford UniversityCaliforniaong-Shi PangUSAUniversity of illinoisat Urbana-ChampaignShuzhong zhangIllinoisChinese university of Hong KongUSAHong KongPrefaceThe past two decades have witnessed the onset of a surge of research in optimization.This includes theoretical aspects, as well as algorithmic developments such as generalizations of interior-point methods to a rich class of convex-optimization problemsThe development of general-purpose software tools together with insight generated bythe underlying theory have substantially enlarged the set of engineering-design problemsthat can be reliably solved in an efficient manner. The engineering community has greatlybenefited from these recent advances to the point where convex optimization has nowemerged as a major signal-processing technique on the other hand, innovative applica-tions of convex optimization in signal processing combined with the need for robust andefficient methods that can operate in real time have motivated the optimization commu-nity to develop additional needed results and methods. The combined efforts in both theoptimization and signal-processing communities have led to technical breakthroughs ina wide variety of topics due to the use of convex optimization This includes solutions tonumerous problems previously considered intractable; recognizing and solving convex-optimization problems that arise in applications of interest; utilizing the theory of convexoptimization to characterize and gain insight into the optimal-solution structure and toderive performance bounds; formulating convex relaxations of difficult problems; anddeveloping general purpose or application-driven specific algorithms, including thosethat enable large-scale optimization by exploiting the problem structureThis book aims at providing the reader with a series of tutorials on a wide varietyof convex-optimization applications in signal processing and communications, writtenby worldwide leading experts, and contributing to the diffusion of these new developments within the signal-processing community. The goal is to introduce convexoptimization to a broad signal-processing community, provide insights into how convexoptimization can be used in a variety of different contexts, and showcase some notablesuccesses. The topics included are automatic code generation for real-time solvers, graphical models for autoregressive processes, gradient-based algorithms for signal-recoveryapplications, semidefinite programming(SDP)relaxation with worst-case approximationperformance, radar waveform design via SDP, blind non-negative source separation forimage processing, modern sampling theory, robust broadband beamforming techniquesdistributed multiagent optimization for networked systems, cognitive radio systems viagame theory, and the variational-inequality approach for Nash-equilibrium solutionsPrefaceThere are excellent textbooks that introduce nonlinear and convex optimization, providing the reader with all the basics on convex analysis, reformulation of optimizationproblems, algorithms, and a number of insightful engineering applications. This book istargeted at advanced graduate students, or advanced researchers that are already familiarwith the basics of convex optimization. It can be used as a textbook for an advanced graduate course emphasizing applications, or as a complement to an introductory textbookthat provides up-to-date applications in engineering. It can also be used for self-study tobecome acquainted with the state of-the-art in a wide variety of engineering topicsThis book contains 12 diverse chapters written by recognized leading experts worldwide, covering a large variety of topics. Due to the diverse nature of the book chaptersit is not possible to organize the book into thematic areas and each chapter should betreated independently of the others. a brief account of each chapter is given nextIn Chapter 1, Mattingley and Boyd elaborate on the concept of convex optimizationin real-time embedded systems and automatic code generation. As opposed to genericsolvers that work for general classes of problems, in real-time embedded optimization thesame optimization problem is solved many times, with different data, often with a hardreal-time deadline. Within this setup the authors propose an automatic code-generationsystem that can then be compiled to yield an extremely efficient custom solver for theproblem familyIn Chapter 2, Beck and Teboulle provide a unified view of gradient-based algorithmsfor possibly nonconvex and non-differentiable problems, with applications to signalrecovery. They start by rederiving the gradient method from several different perspectives and suggest a modification that overcomes the slow convergence of the algorithmThey then apply the developed framework to different image-processing problems suchas e1-based regularization, TV-based denoising, and Tv-based deblurring, as well ascommunication applications like source localizationIn Chapter 3, Songsiri, Dahl, and Vandenberghe consider graphical models for autore-gressive processes. They take a parametric approach for maximum-likelihood andmaximum-entropy estimation of autoregressive models with conditional independenceconstraints, which translates into a sparsity pattern on the inverse of the spectral-densitymatrix. These constraints turn out to be nonconvex. To treat them the authors proposea relaxation which in some cases is an exact reformulation of the original problem. Theproposed methodology allows the selection of graphical models by fitting autoregressiveprocesses to different topologies and is illustrated in different applicationsThe following three chapters deal with optimization problems closely related to SDPand relaxation techniquesIn Chapter 4, Luo and Chang consider the SDP relaxation for several classes ofquadratic-optimization problems such as separable quadratically constrained quadraticprograms(QCQPs)and fractional QCQPs, with applications in communications and signal processing. They identify cases for which the relaxation is tight as well as classes ofquadratic-optimization problems whose relaxation provides a guaranteed, finite worstcase approximation performance. Numerical simulations are carried out to assess theefficacy of the SDP-relaxation approach
    2020-12-10下载
    积分:1
  • 任意N位和M位的乘法器VHDL实现(代码)
    我是2014级复旦的研究生。这是用VHDL语言设计的任意的M乘以N位的乘法器。设计中,被乘数和乘数的位数是通过参数来设置的,可由你来修改。我已写好了testbench。可放心使用。
    2021-05-06下载
    积分:1
  • 心电信号的滤波和特征值提取
    这是用MATLAB编写的一个用于心电信号滤波去噪,和提取特征值的程序,这个是自己弄的程序,希望对大家有用
    2020-12-02下载
    积分:1
  • IEEE14节点潮流计算
    电力系统潮流计算,IEEE14节点潮流计算程序;供学习电力系统潮流计算学者使用
    2020-11-30下载
    积分:1
  • 计算Lyapunov指数,相空间重构,关联维数,等等混沌需要的计算
    计算Lyapunov指数,相空间重构,关联维数,等等混沌需要的计算,标注明晰
    2020-12-02下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载