登录
首页 » Others » 基于51单片机的交通灯设计(全面资料).rar

基于51单片机的交通灯设计(全面资料).rar

于 2020-12-08 发布
0 193
下载积分: 1 下载次数: 2

代码说明:

基于51单片机的交通灯设计(全面资料) 基于51单片机的交通灯设计(全面资料

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Two Dimensional Phase Unwrapping Theory Algorithms and Software
    Two Dimensional Phase Unwrapping Theory Algorithms and Software,扫描文档,清晰度一般。GTWO-DIMENSIONALPHASE UNWRAPPINGTHEORY ALGORITHMSAND SOFTWAREDennis C. ghigliaSandia National LaboratoriesAlbuquerque, New MexMark D. PrittLockheed Martin CorporationGaithersburg, Maryland藏A WILEY-INTERSCIENCE PUBLICATIONJOHN WILEY SONS, INCNew York Chichester Weinheim Brisbane Singapore / Toronto2005060radar interferogram generated byDeathon each pass, The terrain elevations can be computed from thebut the phase differences must fig problem In regions of steeprrupted where there are radar shadow and "layover"effects. Surfaceoccurred between the two passes, which were 24 days apar alsopThis image was acquired as part of a program for the Terrain Modeling Project Officended byEngineering Center. The SAR data was provided by Radarsat Intenational THinterferogram was generated and provided by Vexcel Corporation, Boulder, Coloradop00This text is printed on acid-free paper.Copyright o 1998 by John Wiley Sons, Inc. All rights reservedNo part of this publicationreproduced, stored in a retrievalsystem or transmitted in any form or by any means, elechanical photocopying, recording, scanning or otherwise,xcept as permitted under Sections 107 or 1O% of the 1976of the Publisher or authorization through payment of theontates Copyright Act, without cither theppropriate per-copy fee to the Copyright Clearance Center, 222750-4744. Requests to the Publisher for permission show(978)ood Drive, Danvers, MA 01923, (978)750-8400, faxnc.. 605 Third A venue. New York, NY 10158-0012(212)850-6011fax(212)850-6008,E-Mail:PERMREQ@WILEY.COMTwo-dimensional phase unwrapping: theory, algorithms, andsoftware/Dennis C Ghiglia and Mark D Pritt.SBN0-471-24935-1(cloth: alk. paper)1. Synthetic aperture radar. 2. Signal processing--Mathematics3. Interferometry. I Pritt. Mark D. [L. Title621.367-dc2l97-3803410987654321;4TWO-DIMENSIONALPHASE UNWRAPPINGFOREWORDTwo-dimensional phase unwrapping is the type of problem that is typically thedomain of the mathematician. It is both complex and abstract However, phaseunwrapping is also the core technology that enables radar interferometryOver the past decade interferometry has changed the way that we use radardata. Radar data are now used for precise measurement of surface topography inclouded regions. Additionally, spaceborne radar systems have proved effectivefor measuring surface changes from earthquakes and volcanic eruptions. Theseapplications have created a new class of radar data users primarily involved inmapping and remote sensing applicationIn Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Softwarethe authors unlock the mystery of phase unwrapping in interferometric datarocessing. This text provides a clear, concise treatment of phase unwrappingthat cannot be found in any other source. It presents for the first time therelationship between theory and application. Its uniform treatment of thevarious phase unwrapping techniques makes it a valuable resource for anyengineer or scientist involved in processing or exploitation of interferometricexpect that radar interferometry will increase in importance over the comingdecade with the development of airborne and spaceborne sensor systemsdesigned to optimally exploit this tcchnology. Two- Dimensionsping: Theory, Algorithms, and Software is an important contribution to ourinderstanding of radar interferometry that will bencfit both research intoadvanced techniques and the design of these future sensor systemsJOHN C. CURLANDEPresident and CEOVexcel CorporationPREFACETwo-dimensional phase unwrapping arises most naturally in, but is notrestricted to, interferometric applications. Measured or calculated phasevalues from two or more mutually coherent multidimensional signals are relatedn a nonlinear manner to a desired physical quantity of interest. The nonlinearityis in the form of"wraps"or cycle discontinuities where an underlying two-dimensional phase is wrapped into the interval (T, r. The wrapped phasemust somehow be unwrapped in order to provide an estimate of the underlyingphysical quantity. Estimation of surface topography from interferometricsynthetic aperture radar(SAR)or extremely accurate profiling of mechanicaparts by optical interferometers are two such examplesOriginally developed for military reconnaissance, SAR is now experiencingnew life in civil applications. In fact civilian and commercial interests are rapidlbecoming the drivers of technology. Clever utilization of the coherent SArimagery in interferometric configurations makes possible the measurement ofsurface topography to accuracies much better than the spatial resolution( 0.3meters to several meters)of the SaR images themselves. Indeed, as is commonplace with interferometers, measurement sensitivities are on the order of theoperating wavelength, which is typically a few centimeters for SAR. Imaginggeometries, noise, and other operational factors degrade performance some-what from centimeter-scale accuracies, but nevertheless SAR interferometrymakes possible global topographic mapping in a timely fashion, in daylight or atnight, in all weather conditions, and with unprecedented accuracyinterferometry also can detect deformations of the earths crust on the orderof millimeters, a capability that shows promise for the timely detection ofearthquakes or volcanic eruptionsThese exciting possibilities have led to an explosive growth in the field of phaseunwrapping as indicated by the increasing number of journal publicationsNewcomers to SAR interferometry and related disciplines will eventuallyonfront the phase unwrapping problem and, undoubtedly, will encounter arather bewildering variety of ideas and algorithms, including those based onneural networks, simulated annealing, cellular automata, genetic algorithms,and other unusual constructs. Which of these are good? Which are not? We doThroughout this book we use the notation(-丌,丌 to represent the interval-丌
    2020-12-12下载
    积分:1
  • 包括多机器人避障算法.rar
    多机器人避障防碰路径规划,最后形成编队,MATLAB仿真程序
    2020-11-28下载
    积分:1
  • 傅里叶变换轮廓术的MATLAB实现
    傅里叶变换轮廓术的MATLAB实现。基于参考光栅和变形光栅得出折叠相位,进过相位展开,最后根据相位高度关系得出物体高度信息。
    2020-11-30下载
    积分:1
  • 在WinCE5中查找并连接周围的蓝牙设备并实现通信
    蓝牙(Bluetooth)是一种短距离无线通信技术,利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与Internet之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。说得通俗一点,就是蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备,不必借助电缆就能联网,并且能够实现无线上因特网,其实际应用范围还可以拓展到各种家电产品、消费电子产品和汽车等信息家电,组成一个巨大的无线通信网络。
    2020-12-10下载
    积分:1
  • 简单matlab车牌字符分割
    基于投影的方法实现车牌字符的分割,分割好的字符是二值图像可用来字符识别。
    2020-12-05下载
    积分:1
  • matlab车牌定位识别,完整案例(基于阈值分割的车牌定位识别)
    基于matlab实现,车牌定位识别,文件中包含了,完整的案例以及代码!
    2019-04-06下载
    积分:1
  • eclipse 4.x Luna安装activiti designer插件
    自己在sts Version: 3.6.3.SR1 上成功安装plugin把这三个文件拷贝到自己的eclipse的plugin文件夹下面重启eclipse解压activiti-designer-5.14.1.zip,断开网络,install new software选择local,选择解压的activiti插件目录就可以了,这样可以加快安装速度
    2020-11-30下载
    积分:1
  • STM32 SX1278测试序带原理图(看评论酌情下载)
    STM32 SX1278测试程序带原理图
    2020-12-06下载
    积分:1
  • 现代谱估计SVD-TLS,ARMA,最小二乘方法
    用一般的最小二乘方法和SVD-TLS方法估计观测数据的ARMA模型的AR参数,并估计正弦波的频率。
    2020-12-02下载
    积分:1
  • C++实现灰度图像的边缘检测、提取及轮廓跟踪
    C++实现灰度图像的边缘检测、提取及轮廓跟踪;包括Roberts算子、Sobel算子、Prewitt算子、Krisch算子;hough变换;轮廓提取;种子填充。(bmp灰度图片),vc6.0运行无误
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载