登录
首页 » Others » 基于MATLAB的数字滤波器设计毕业论文设计

基于MATLAB的数字滤波器设计毕业论文设计

于 2020-12-09 发布
0 169
下载积分: 1 下载次数: 2

代码说明:

基于MATLAB的IIR数字滤波器的设计 (毕业论文),是一篇设计基于MATLAB的IIR数字滤波器的设计方法和毕业论文,有大量的有用信息。是一篇非常值得下载的毕业论文。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 京东电商机器学习之推荐系统实践
    基于用户和物品的推荐系统,比较值得机器学习行业分析目录x背景介绍x浅层模型时代x深度学习时代品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup背景介绍我们的业务媒体流量主站搜索页京东商品挖掘主站列表页京东移动端商品召回京东广告和商品推荐展示包段媒体业务系统排序优选广告召回ADX流量京准通广告平机器学习系统SEM流量品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup背景介绍问题x主要解决的问题+机器学习在排序算法中的应用+特点x实时,在线x广告,推荐的混合系统品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup目录x背景介绍x浅层模型时代x深度学习时代品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup浅层模型时代|机器学习系统核心问题x模型算法x日志流x训练系统x特征系统x评估系统品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup浅层模型时代模型算法x浅层模型算法大规模稀疏性特征建模,Ir+核心优化方向:特征x手工特征工程x特征组合算法:*Fm/ffm* gbdt+Ir品平DTCC2016年中国数据库技术大会SeaueMedia Aise G chinaUhzx Tup浅层模型时代模型算法x Fm/ffm通过因式分解,减少数据稀疏性,有效学习特征组合参数规模:η^2降为k*n(k
    2020-12-05下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 设计基于Matlab的音频处理系统的设计
    基于Matlab的音频处理系统的设计一、课程设计目的1.学会MATLAB的使用,掌握MATLAB的程序设计方法;2.掌握在Windows环境下语音信号采集的方法;3.掌握数字信号处理的基本概念、基本理论和基本方法;4.掌握MATLAB设计FIR和IIR数字滤波器的方法;5.学会用MATLAB对信号进行分析和处理。
    2020-11-02下载
    积分:1
  • mlx90614红外测温传感器stm32f103rct6
    mlx90614红外测温传感器,使用stm32f103rct6实现,使用LCD屏幕显示。mlx90614红外测温传感器,使用stm32f103rct6实现,使用LCD屏幕显示。
    2020-06-27下载
    积分:1
  • camshift+kalman+LBP特征目标跟随算法实现
    基于camshift均值漂移算法, kalman卡尔曼滤波算法及LBP特征的目标跟随算法,配置完成 opencv路径即可运行。LBP特征跟踪非常的稳定,对于颜色差别不大的区域也能流程跟随,比如跟踪手能够平滑的经过脸部区域而不漂移。工程为集中集中算法融合优化,非常适合学习及工程实践。
    2020-11-28下载
    积分:1
  • 差分进化算法源序代码(DeMat)
    差分进化算法源程序代码(DeMat)
    2019-03-16下载
    积分:1
  • 种简单的数字图像复制粘贴检测
    用MATLAB实现了基于sift的数字图像复制粘贴检测
    2020-12-05下载
    积分:1
  • MDK 4.71破解
    MDK 4.71 破解 KEIL4,能破解4.71
    2020-12-08下载
    积分:1
  • SX1212官方驱动序及说明(中英文对照)
    超低接收电流芯片SX1212官方驱动程序及说明文档
    2020-12-09下载
    积分:1
  • 带CRC校验,Modbus校验的串口调试工具
    带CRC校验,Modbus校验的串口调试工具 超好用,可以自己生成校验字节,是基于 校验的串口调试工具的首选!
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 104921会员总数
  • 16今日下载