登录
首页 » Others » Lectures on Stochastic Programming-Model

Lectures on Stochastic Programming-Model

于 2020-12-09 发布
0 162
下载积分: 1 下载次数: 1

代码说明:

这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • TSP 蚁群算法 MFC实现
    对旅行商问题的解法提出了蚁群算法,并用MFC编程实现,有比较有好的界面,并对问题做了细致的分析。
    2020-11-29下载
    积分:1
  • abaqus经典例
    abaqus主要用于有限元的分析,功能模块非常全面,可用于结构静力学动力学分析,载荷校核,流体力学计算
    2020-12-08下载
    积分:1
  • matlab模拟人的运动姿态
    用matlab模拟人行走,跑动。所需的数据已经存在,直接可以运行看到效果。
    2020-12-09下载
    积分:1
  • 显著性检测方法:LC(matlab实现)
    根据Visual Attention Detection in Video Sequences Using Spatiotemporal Cues这篇文章写的matlab程序,欢迎下载
    2020-11-06下载
    积分:1
  • 基于多层码遗传算法的车间调度算法
    基于多层编码遗传算法的车间调度算法,结合具体问题给出了程序分析
    2020-12-11下载
    积分:1
  • 精通网络视频核心开发技术pdf
    基本信息作者: 于广出版社:电子工业出版社ISBN:9787121126482上架时间:2011-3-7出版日期:2011 年4月开本:16开页码:1版次:1-12 内容简介《精通网络视频核心开发技术》由浅入深地讲解了visual c++在音频和视频领域的开发技术,并通过具体的实例来讲解其具体的实现流程。全书内容分为18章,详细讲解了使用各种软件和平台进行音/视频多媒体编程的技术,以案例为对象展示实现过程、分析技术难点。主要内容包括directsound开发音频、directshow/vfw开发视频、mmx/sse进行多媒体汇编编程、dm642 dsp进行音
    2020-11-28下载
    积分:1
  • 基于STM32的双向DC-DC变换器的设计与实现
    本系统主要由 BUCK 降压模块、BOOST 升压模块、测控模块、辅助电源模块组成。其中BUCK 降压模块和BOOST 升压模块的驱动选用具有波形互补的可编程芯片IR2104、电流采样选用TI 公司专用高边电流采样芯片INA282;测控模块采用低功耗单片机STM32 对输出电压、输出电流实现闭环PI 控制。系统可以实现:在充电模式下,充电电流在 1~2A范围内步进可调且步进值为 0.05A,电流控制精度 1.30%左右;充电电流变换率为 0.87%;充电效率可达到 97.11%,具有测量、显示充电电流以及过充保护功能。在放电模式下,放电效率可达到96.54%且电压能保持在 30V目录第一章绪论1.1课题背景·*······*···*·····*···‘1.2双向DC-D变换器的研究意义1121.3国内外研究和应用现状1.4论文主要的研究内容.第二章双向DG-DG变换器拓扑结构的硏究.34662.1双向DC-DG变换器的基本原理与类型2.2双向DC-DG变换器的电路拓扑2.3双向DCDC变换器方案的设计10第三章双向DC-DC变换器硬件电路分析及参数设计.3.1双向DG-DG变换器的硬件电路分析.…123.2BUCK-B00sT电路器件的选择及参数设计3.3电流采样电路分析及参数设计173.4 MOSFET管驱动电路设计183.5辅助电源设计.19第四章双向DG-DG变换器的软件设计4.1软件设计方法214.2主函数程序设计4.3按键模式的识别.224.4恒流恒压模式的设计……第五章双向DG-DG变换器调试、实验结果与分析255.1测试仪器∴255.2测试方法255.3测试实验数据5.4测试结果分析…27第六章总结与展望6.1总结286.2展望.28[参考文献]附录(一):项目课题获奖情况及总体实物图….31附录1.1项目课题获奖情况31附录1.2双向D-DC变换器的总体实物图,34附录(二)程序清单…..35第一章绪论1.1课题背景航天器由若下分系统组成,分为有效载荷和航天器平台两大类。有效载荷主要是直接执行特殊的航天任务,而航天器平台主要由航天器结构和服务与支持系统构成。服务与支持系统主要包括电源裝置、姿态控制裝置、轨道控制装置、无线电测控装置、数据保管等等。因此,电源分系统是极其重要的,它是航大器所有能源供给装置。若电源部分工作不止常,则整体就将失去作用,变为毫无用处,电源重量占航天器重量的15%~25%。分为化学电源、太阳电池电源和核电源三类。日前世界上90%以上的航天器都采用太阳能电池阵构成的光伏电源发电系统。主功率供电回路的额定电压(母线电压)三个等级:(1)低压—28V,适用功率等级:1200W(2)中压——42或50V,适用功率等级:200水平(3)高压—100V或以上,适用功率等级:4000V水平。载人飞船氿道运行高度为300~400Km,轨道周期约为9lmin,其中轨道最长,阴影吋间37min,最短光照时间54min。飞船屯源分系统组成部分如表1所表1飞船电源分系统组成电源名称电源类型配置舱段用途备注太阳电池阵-镉镍待发段、发射段、自主主电源推进舱蓄电池系统运行段向整船供电有留轨仁务需要时,飞留轨电源太阳电池镉都轨道舱留轨使用期间船配置留轨电源,否电池系统不配置返回/着陆返回、着陆、等待期旧锌银蓄电池组返回舱电源供电补充峰值功率、应急飞应急电源锌银蓄电池组推进舱行供电目前,我国的航天电源部分调节器主要依赖于从欧洲等国家进口,需要耗费巨资,对我国载人航天的航天器产生极其不利的影响。因此,具有自主知识产权的电源部分调节器的研制,具有很重要的意义和深远的影响1.2双向DDG变换器的研究意义在传统的太阳能电池阵构成的光伏电源发电系统,传统的蓄电池充、放电模块很难保证太阳能阵在太阳光线充足时产生多余的能量不会导致航天器的过热以及储能装置蓄电池组的过允电,而且功率密度点较大,成木高,系统结构相对复杂。太阳能光伏电源发电系统是将太阳能转换成电能的发电系统,它的主要部件是由太阳能电池组、太阳能控制器、储能装置蓄电池(组)和太阳跟踪控制系统组成。其特点是高可靠性、寿命长以及对环境不产生污染、能独立进行发电且并网运行,受到世界各国电网公司的喜欢,发展前景十分广阔。太阳电池的发电功率通过“分流调节”全部变换为母线功率,一部分直接给负毂供电,另一部分则通过“充电调节”变换为充电功率为储能装置蓄电池组充电;蓄电池组功率通过“放电调节”变换为母线功率。对太阳电池发电功率的使用优先级依次为供电、充电、分流。充电功率可以视作母线的可调负载。太阳能电池光伏电源发电系统工作原理如图1所示。正丹线充电控制放电调节负载太阳能电池太阳能电池分流控制蓄电池组充电阼供电阵负母线图1光伏电源发电系统工作原理双向DC-DC转换器是连接正负母线电压与储能系统(如储能装置蓄电池组)的关键,所以使转换器的效率变髙极其重要。本文提出了一种降低功耗,提高整机效率的方案,使得对双问DCDC转换器的探讨变得更加具有意义。1.3国内外研究和应用现状20世纪后期,太阳能电池阵-储能装置蓄电池组构成的光伏电源发电系统的休积和重量庞大,著名外国学者提出了一种基于BCK/B0OST双向DCDC直流转换器来代替原有光伏电源发电系统的允电、放电模块,从而实现电压的稳定20世纪90年代,中国工程院院士陈清泉教授将基于BUCK/ BOOST双向DC-DC变换器在电动车领域使用,同年,外国专家研制了用大功率的水冷式DC-DC变换器即基于BUCK/ BOOST双向DC-DC直流转换器来驱动电动车,由于基于BUCK/BO0ST双向DC-DC变换器的输入输出电压的忙负极相反,不适合在电动车上应用,因此,他提出了一种基于BUCK-BO0ST级联型的双向DC-DC变换器,变换器的电源输入端与电压输出端的负端共用。经过4年时间,美国著名大学-弗吉尼亚大学教授李泽元开始研究在燃料电池上双向DC-DC变换器的配套应用。由此可见,用于载人航天的航天器电源和电动车辆的技术更新对双向DC-DC变换器的发展具有巨大的推动作用,随着开关直流变换器技术即脉宽调制技术的实现,给双向DCDC变换器的发展带来了曙光。1994年,有一位著名的澳大利亚学者发表论文,总结出几种非隔离型双向DC-DC变换器拓扑结构,主要是在CM0S开关管上反向并联具有快速、低功耗的二极管,且在二极管上反并联CMOS开关管,从而构成非隔离方式的双向DC-DC变换器种类有:BUCK-B0OST变换器、BUCK/B0OST变换器、CUK变换器和SEPI-ZETA变换器2004年,由我国学者张方华博士对推挽正激移相式、级联式、正反激组合式双向DC-DC直流变换器做了深入的研究。提出∫很多新型的应川电路,研究∫其控制模型,采用PI补偿环节的单电压闭环实现了系统闭环稳定。双向DC-DC变换器的硏究是近年来开关电源技术研宄的一个热门话题。2006年梁永春博士探讨了由反激式并联输入、串联输出构成的反激逆变器,提出了种同步整流的控制方案,极大地简化了髙频链逆变器的控制,使得整流二极管的导通损耗大幅度降低,整个电源系统的效率提高到85.8%。1.4论文主要的研究内容要求:设计一种双向DC-DC变换器,实现电池组的充电、放电功能。系统结构如图2所示,电池组由5节18650型、容量2000~3000mAh的锂离子电池串联组成。所用电阻阻值误差的绝对值不大于5%辅助电源测控电路3BS1 Rs-5Q2电双向DCDC池变换电路组RL=302直流稳压电源图2电池储能装置结构框图1.基本要求接通S、S3,断开S2,将装詈设定为充电模式(1)U2=30V条件下,实现对电池恒流充电。保障充电时电流l在1~2A范围内能够步进可调,步进值应≤0.1A,电流的控制精度≥5%。(2)设定1=2A,调整直流稳压屯源输出电压,使U2在2436V范围内变化时,要求充电电流I的变化率不大于1%(3)设定l1=2A,在U2=30V条件下,变换器的效率n1≥90%(4)测量并显示充电电流,在I-1~2A范围内测量精度不低于2(5)具有过充保护功能:设定l1=2A,当U1超过阈值U=24±0.5V时,停止充电。2.发挥部分(1)断开S1、接通S2,将装置设定为放电模式,保持U2=30±0.5V,此时变换器效率n2≥95%(2)接通S1、S2’断开S3’调整直流稳压电源输出电压,使直流电源电4压U在32~38V范围内变化时,双向DC-DC变换器能够自动切换工作模式即可自动切换充放电模式并保持输出电压U2=30±0.5V。(3)在满足要求的前提下简化结构、减轻重量,使双向DC-DC变换器、测控电烙与辅助电澒三部分的总重量不大于500g。(4)其他第二章双向Dc-D变换器拓扑结构的研究2.1双向DCDc变换器的基本原理与类型2.1.1双向DC-DG变换器的基本原理双向DC-DC变换器是把育流电压转换成另一个数值的电压,它是由软件控制导通的CW0S开关管、储能电感、续流二极管、具有滤波作用的电容、负毂等构成的,通过具有滤波功能的负载电路和直流电压时而使开关管时而接通或者时而关断,仗得另一端即负载上得到另一个直流电压2.1.2D0DG变换器的类型目前,国内外将双向DCDC变换器的拓扑结构主要划分为非隔离式和隔离式两大类。非隔离型拓扑的主要有:BUCK降压式、 BOOST升压式、BUCK- BOOST升降压型等拓扑。非隔离型拓扑如图3所示。隔离型拓扑的主要有:止激、反激、推挽、半桥、全桥型变换器(1)隔离型变换DYYYCD(a)BUCK变换器拓扑(b) BOOST变换器拓扑DL(c)BUCK- BOOST变换器拓扑图3非隔离型变换器拓扑以最基木的BUCK降压式变换器和BO0ST升压式变换器为例,介绍其工作原理。BUCK降压式变换器:当CMOS开关管Q接通时,电源Vin通过电感L给电容C充电;当开关管断开时,电感L通过快速、低功耗二极管D续流,电压逐渐降低。此时,电容上的电流由正逐渐降为零,最后变成负向,进而使开关管又一次导通,使得电感上电流增加。其储能电感L上电流波形如下图4所示tImar1-min(a)BUCK电感电流连续时波形(b)BUCK电感电流断续时波形图4BUCK电感电流波形BO0ST升压式变换器:当开关管Q导通吋,电源向电感L储能,电感L电流增加,负载由电容C供电;当开关管Q关断时,电感电流减小,电感电势与输入电压叠加,迫使二极管D导通,一起向负载供电,并同时向电容C充电。其电感电流波形如图5所小7
    2020-12-05下载
    积分:1
  • linux centos6的libpcre.so.0
    资源里面的内容有:pcre-7.8-6.el6.x86_64.rpm加上说明文档:里面有各种版本下载地址。我的系统是linux centos 6
    2020-12-10下载
    积分:1
  • 霍尼韦尔二维码扫描枪USB串口模式驱动YJ4600, GS550, HF600, HH360, HF500, HH660驱动
    【实例简介】霍尼韦尔二维码扫描枪驱动,这么重要的资源,网上找了半天找不到,到官网注册了账号,翻了半天终于找到 YJ USB Serial Driver r2.00.7z YouJie USB Serial Driver r2.00 This Youjie USB Driver package - Non-Microsoft WHQL Certified, supports the following device: YJ4600, GS550, HF600, HH360, HF500, HH660 WINDOWS OS SUPPORTED: ===================================== 1/ Windows XP 32 and 64 bit 2/ Windows Vista 32 and 64 bit 3/ Windows 7 32 and 64 bit 4/ Windows 10 32 and 64 bit 5/ Windows Embedded WEPOS 6/ Windows Embedded POSReady 2009 7/ Windows Embedded POSReady 7 8/ Windows Embedded 8 Industry 9/ Windows Embedded 8.1 Industry 10/ Windows 10 IoT Enterprise LTSB 2015
    2021-11-11 00:33:00下载
    积分:1
  • Labview模拟汽车控制面板
    运用Labview编写简单程序,利用labview簇功能,模拟汽车面板,简单美观,大家可以动手试试,程序仅供参考,望大家一起学习。
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载