登录
首页 » Others » 大学生创业计划书有关于校园自行车的原创稿

大学生创业计划书有关于校园自行车的原创稿

于 2020-12-10 发布
0 182
下载积分: 1 下载次数: 2

代码说明:

一份关于校园自行车的创业方案希望对各位有用

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 李明洋天线阵列视频课课堂讲义(完整版)和HFSS工文件
    包含李明洋天线阵列视频课程的全部课堂讲义和HFSS工程文件,囊括了阵元分析、微带阵列天线设计实例,相控阵天线设计等
    2020-12-05下载
    积分:1
  • labview写模拟3D机械手臂
    用labview编写的3D机械手臂,可添加、删除、进行各种动作
    2020-12-11下载
    积分:1
  • RC522读写MI卡序,STC89C52RC调试通过,分读卡端和写卡端
    根据RC522例程修改,实测可用,写卡端程序将新卡扇区1的默认密码更改,写入数据块1的数据,使该卡为我系统认可;读卡端对卡的扇区1密码进行验证并对比数据块1的内容,验证完成则认可为系统卡,否则返回错误代码。整个程序简洁易懂,均添加了注释,适合初学者下载研究,稍作修改即可应用到自己的开发中。
    2020-11-28下载
    积分:1
  • 智慧农业顶层设计与解决方案
    近年来,智慧农业发展突飞猛进,众多技术、资金、人才的流入,为农业现代化发展提供了广阔的发展空间与平台机遇。在刚举办的“互联网+现代农业”暨智慧农业高峰论坛上,就当前智慧农业、互联网+现代农业的发展现状,主办方托普云农副总经理朱旭华接受了采访,立足智慧农业的发展生态圈,呼吁多方力量携手共同推进互联网+现代农业的发展。“智慧农业作为一个非常巨大的市场,不可能是一家企业能做的完的、做的好的,要想持续健康发展,还需要更多的合作共赢、互帮互助。”在朱旭华看来,这种合作并不是简单的你依附我,我依附你,而是产生倍增效应,1+1一定要大于2。一号文件代表政府的引导和市场的方向,尤其是农业供给侧改革这个概念。
    2020-12-04下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 单片机 C语言温度控制
    单片机 C语言温度控制程序,利用中断来读取温度传感器发来的数据。在51系列单片机上测试通过。
    2020-11-30下载
    积分:1
  • matlab实现 中值滤波去除基线漂移
    调用matlab自带函数,对心电信号ECG实现中值滤波,达到去除基线漂移的目的。建议ECG数据长度不要太大,中值滤波运算速度较慢。
    2020-12-03下载
    积分:1
  • LFM脉冲压缩MATLAB
    雷达信号处理中LFM脉冲压缩算法的MATLAB实现,可供初学者学习使用
    2020-07-03下载
    积分:1
  • matlab中仿真自适应信号处理序贯回归SER算法
    matlab中仿真自适应信号处理序贯回归SER算法,成功运行通过,并有详细注解。
    2020-11-28下载
    积分:1
  • MIMO雷达原理及关键技术分析
    在对MIMO 雷达基本原理进行概述的基础上,重点分析了MIMO 雷达设计时所涉及的主要关键技术,对关键技术实现的途径及常用方法进行了讨论和分析,最后提出了还需进一步研究的方向和主要内容。f= TNt rect tj Ift+-utrect t=/t≤7Tf=f+c△fi△f±M/}jdM(n(≤p(n)≤)st=∑i m2fnf…f}Af AN- Af)21994-2014ChinaAcademicJournalElcctronicPublishingHousc.Allrightsrescrved.http://www.cnki.nct21994-2014ChinaAcademicJournalElcctronicPublishingHousc.Allrightsrescrved.http://www.cnki.nctMMMN发功仁号发射权向按收权呆D酉发射按收通辽道1滤波DBE发射接收通道2收输中射控收通道MDBF21994-2014ChinaAcademicJournalElcctronicPublishingHousc.Allrightsrescrved.http://www.cnki.nct
    2020-12-04下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载