登录
首页 » Others » 银行家算法c语言实现+实验报告

银行家算法c语言实现+实验报告

于 2020-12-10 发布
0 235
下载积分: 1 下载次数: 2

代码说明:

操作系统实验 银行家算法+实验报告 完整代码c语言实现

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • nmodbus官方例 包括dll(vb.net与C#)
    nmodbus官方例程 ,包括C#和VB.net 两种语言,包括RTU和TCP的master与slave例程,
    2020-12-04下载
    积分:1
  • Xilinx zynq 7020移植uCOS_HelloWorld
    zynq 7020移植uCOS实现HelloWorld,所有的资料都打包进去了
    2021-05-06下载
    积分:1
  • hls工具写的8点fft
    使用xilinx hls编写的8点fft,稍加扩展就可变为任意基二点fft,代码简洁有注释
    2020-12-09下载
    积分:1
  • 合成孔径雷达的经典成像算法cs(matlab)仿真代码(吐血整理,内容全,注释全)
    合成孔径雷达的经典成像算法cs(matlab)仿真代码(吐血整理,内容全,注释全)不需要验证,直接可拿来用,代码简洁已读,希望对有需要的人有帮助
    2020-12-05下载
    积分:1
  • 逻辑斯蒂回归模型
    逻辑回归 Logistic Regression LR 模型其实仅在线性回归的基础上 套用了一个逻辑函数 但也就由于这个逻辑函数 使得逻辑回归模型成为了机器学习领域一颗耀眼的明星 本代码实现了逻辑斯蒂回归模型
    2020-12-01下载
    积分:1
  • 机票预订系统的系统流
    用visio软件画的机票预订系统的系统流程图
    2020-12-02下载
    积分:1
  • 亚像素Hough圆检测.zip
    【实例简介】Matlab编写的Hough圆检测,可以精确到亚像素,对研究Hough的人又很大帮助
    2021-12-03 00:32:12下载
    积分:1
  • 5G Mobile and Wireless Communications Technology
    关于5G通信和无线传输的相关知识5G Mobile and wirelessCommunications TechnologyEDITED BYAFIF OSSEIRANEricssonJOSE F MONSERRATUniversitat politecnica de valenciaPATRICK MARSCHCAMBRIDGEUNIVERSITY PRESSCAMBRIDGEUNIVERSITY PRESSUniversity Printing House, Cambridge CB2 8BS, United KingdomCambridge University Press is part of the University of CambridgeIt furthers the Universitys mission by disseminating knowledge in the pursuit ofeducation learning and research at the highest international levels of excellencewww.cambridge.orgInformationonthistitlewww.cambridge.org/9781107130098C Cambridge University Press 2016This publication is in copyright. Subject to statutory exceptionand to the provisions of relevant collective licensing agreementsno reproduction of any part may take place without the writtenpermission of Cambridge University PressFirst published 2016Printed in the United Kingdom by TJ International Ltd. Padstow Cornwalla catalogue record for this publication is available from the british libraryLibrary of Congress Cataloguing in Publication dataOsseiran. Afif editor5G mobile and wireless communications technology /[edited by] Afif Osseiran, EricssonJose F monserrat, Polytechnic University of Valencia, Patrick Marsch, Nokia NetworksNew York: Cambridge University Press, 2016LCCN2015045732|ISBN978110713009( hardback)LCSH: Global system for mobile communications. Mobile communication systems- StandardsLCC TK5103483A152016DDC62138456dc23Lcrecordavailableathttp://icCn.loc.gov/2015045732IsBN 978-1-107-13009-8 HardbackCambridge University Press has no responsibility for the persistence or accuracy ofURLS for external or third- party internet websites referred to in this publicationand does not guarantee that any content on such websites is, or will remainaccurate or appropriateTo my new born son S, my twin sons H& N, my wife L s-y for her unwaveringencouragement, and in the memory of a great lady my aunt K eA OsseiranTo my son, the proud fifth generation of the name Jose Monserrat. And with thewarmest love to my daughter and wife, for being always there.E MonserratTo my two small sons for their continuous energetic entertainment, and my dearwife for her amazing patience and support.P MarschContentsList of contributorspage xIvForewordAcknowledgmentsXIXAcronymsXXIIIntroduction1. 1 Historical background1.1.1 Industrial and technological revolution: from steam enginesto the internet1. 1.2 Mobile communications generations: from IG to 4G1.1.3 From mobile broadband ( mbb) to extreme MBB1. 1.4 IoT: relation to 5G1.2 From ICT to the whole economy6771.3 Rationale of 5G: high data volume, twenty-five billion connecteddevices and wide requirements1.3.1 Security1.4 Global initiatives1. 4.1 METIS and the 5G-PPP1. 4.2 China: 5G promotion group2241. 4.3 Korea: 5G Forum141. 4.4 Japan: ARIB 2020 and Beyond Ad Hoc1. 4.5 Other 5G initiatives14.6 Iot activities1.5 Standardization activities445551.5.1ITU-R1.5.23GPP161.5.3 EEE161.6 Scope of the book16References185G use cases and system concept212. 1 Use cases and requirements212.1.1 Use cases212. 1.2 Requirements and key performance indicatorsContents2.2 5G system concept322.2.1 Concept overview322. 2.2 Extreme mobile broadband342.2.3 Massive machine-type communication362.2.4 Ultra-reliable machine-type communication382.2.5 Dynamic radio access network392.2.6 Lean system control plane432. 2. 7 Localized contents and traffic flows52.2.8 Spectrum toolbox2. 3 Conclusions48References48The 5g architecture503.1 Introduction503.1.1 NFV and SDN503.1.2 Basics about ran architecture533.2 High-level requirements for the 5G architecture563.3 Functional architecture and 5g flexibility573.3.1 Functional split criteria583.3.2 Functional split alternatives593.3.3 Functional optimization for specific applications3.3.4 Integration of lte and new air interface to fulfill 5Grequirements3.3.5 Enhanced Multi-RAT coordination features663. 4 Physical architecture and 5G deployment3.4.1 Deployment enablers673.4.2 Flexible function placement in 5G deployments713.5 Conclusions74References75Machine-type communications774.1 Introduction774.1.1 Use cases and categorization of mto774.1.2 MTC requirements804.2 Fundamental techniques for MTC834.2.1 Data and control for short packets834.2.2 Non-orthogonal access protocols854.3 Massive mtc864.3.1 Design principles864.3.2 Technology components864.3. 3 Summary of mMTC features944.4 Ultra-reliable low-latency MTC944.4. 1 Design principles944.4.2 Technology componentsContents4.4.3 Summary of uMTC features1014.5 Conclusions102References103Device-to-device(D2D)communications1075.1 D2D: from 4G to 5G1075.1.1 D2D standardization: 4G LTE D2D1095.1. 2 D2D in 5G: research challenges1125.2 Radio resource management for mobile broadband D2D1135.2.1 RRM techniques for mobile broadband d2d5.2.2 RRM and system design for D2D1145.2.3 5G D2D RRM concept: an example5.3 Multi-hop d2d communications for proximity and emergencyservices1205.3.1 National security and public safety requirements in 3GPPand Metis1215.3.2 Device discovery without and with network assistance125.3.3 Network-assisted multi-hop d2d communications1225.3.4 Radio resource management for multi-hop D2D1245.3.5 Performance of D2D communications in the proximitcommunications scenario1255. 4 Multi-operator d2d communication1275.4.1 Multi-operator D2D discovery275.4.2 Mode selection for multi-operator D2D1285.4.3 Spectrum allocation for multi-operator D2D295.5 Conclusions133References1346Millimeter wave communications1376. 1 Spectrum and regulations1376.2 Channel propagation1396.3 Hardware technologies for mm W systems1396.3.1 Device technology1396.3.2 Antennas1426.3.3 Beamforming architecture1436.4 Deployment scenarios6. 5 Architecture and mobility1466.5.1 Dual connectivit1476.5.2 Mobility1476.6 Beamforming1496.6. 1 Beamforming techniques1496.6.2 Beam finding1506.7 Physical layer techniques1526.7.1 Duplex scheme152
    2020-12-06下载
    积分:1
  • 综合组件的界面
    这个非常的好用。里面有各种组件,例如:复选框,tab选项,导航界面,ui界面等等
    2020-12-06下载
    积分:1
  • 浙江大学计算理论复习总结
    计算理论复习总结,但是考试快要结束了,估计大家也没有什么需要了。28.文法是CFG的推广,任何CFG都是文法。G=(V,∑,R,S)29.语言被文法生成ⅲ它是re的。30.所有数值函数都是原始递归的31.原始递归函数集是递归可枚举的。32.特殊语言/问题H={"M"w":M在w上停机}lH={"M"w":M是一台在"w"上不停机的TM}H1={"M":M在“M”上停机}H1={w:要么w不是一台TM的编码,要么w是M的编码,M是一台在"M"上不停机的TM}H:re.;H1:re.;-H,-H1:非r.e.;2-SAT∈P;SAT∈NPThe world as We Dont Know itreAsumming P≠APCo『eHrecursiveSATSATCO-A伊II Asumming P=Npr, eCo-r.erecursiveNP= cO-Np= p33没有算法的问题称作不可判定的or不可解的,如TM的停机问题34.证明不可判定通用图灵机U通过递归函数归约到L如果L是递归的则U是递归的ic若L1非递归,并存在L1到L2的归约,则L2也非递归。递归函数是 Turing Computable的35.语言是图灵可枚举的,证存在枚举它的图灵机。(M通过空格代开始,周期性的经过特殊状态q来枚举L,任意顺序且可重复)6.不可判定语言与递归语言互为补集,与rc语言有交集。37语言是re.,if它是图灵可枚举的;语言是递归的,i它是以字典序 turing可枚举的。8.P在并交连接和补运算下封闭NP在并、连接运算下封闭。若NP在补下封闭则NP=P39.H={M"wM在最多2w步后停机}唾P40.所有正则语言和所有CFL都属于P41.NPA.机器角度去定义:被多项式界限非确定型图灵机判定的所有语言的类。B.基于 verifier的定义:NP问题上建立的非确定机包含两步1)非确定地猜一个解2〕用一个确定的算法判定该解是否为可行解判定一个给定猜测值是否满足该问题(可满足性)的算法称作 verifier,一个问题称作NP问题当且仅当存在一个多项式时间的 verifier这两个定义是不矛盾的,因为如果一台非确定TM在多项式时间内可以判定一个非确定选择的翰入是否满足,就是基于 verifier的定义。P和NP的区别a problem is in P if we can decide them in polynomial time. It is in NP if we candecide them in polynomial time, if we are given the right certificate42.若存在计算函数f的多项式界限的图灵机M,则f称为多项式时间可计算的43.若τ1是L1->l2的多项式归约,τ2是L2->I3的多项式归约,则τ1τ2是L1->l3的多项式归约44.证明NP完全法一、按定义:LΣ*,若(a)L∈NP,且(b)对每个语言L∈NP,存在从L到L的多项式归约则L称为NP完全的。法二、归约,对于语言L,(a)若L∈NP(b)一个NP完全问题可以在多项式时间规约到L,ie. SAT 0 is context-free but not regular49.L=L1L2,L是CFL,则L1一定是CFL(x50. Regular-CFL不一定是CFL,如a*b*c*-anbn包含 anben51. 2-way PDalie PDa whose input heads can move both left and right] are more powerfulthan 1-way pda52. Given a PDa M1 and an fa M2, the problem l(M1)cl(M2)is decidable53.DFA/NFA识别的是 exactly正则语言54.Re.只在补和差下不封闭,CFL在交下也不封闭55.非正则语言的可能是正则语言。比如A:[W=w}及所有回文,A=*,为正则语言56.典型非正则:w=wR57.正则语言的子集可能非正则,如 anben是a*b*c*的子集;又如Σ*是正则语言,H≌Σ*58.归约:X到Y的归约可以理解为X到Y问题的映射, reduction可以解释为 at least asdifficult as….比如ⅹ可以被Y的算法解决,则 X is no more difficult than yⅩ可以约到Y,记X≤Y。e.gx2可以归约到任意两数的乘积。若有A≤B,A是不可判定问题>B不可判定A不递归->B不递归B可判定>A可判定B是递归的->A是递归的59.若X多项式时间归约到Y,Y多项式时间可解,则X多项式时间可解若X多项式时间归约到Y,Ⅹ多项式时间不可解,则Y多项式时间不可解60.X多项式时间归约到Y,Y多项式时间归约到Z,则X多项式时间归约到Z61.PRME( COMPOSITE)多项式时间归约到 Factor,但是 Factor多项式时间不能归约到PRIME COMPOSITE )o62.若A≤PB,B∈NP,则A∈NP。证明A≤PB→存在确定图灵机X,可将A归约到B。B∈NP→存在一个非确定图灵机N可判定B。我们希望构造一个新的TM(ⅹN)是的ⅹ*N非确定多项式时间求解A,则A∈NPRunning time of X*N≤1+p(mB>+qp(m)(B多项式时间非确定判定是多项式时间所以A∈NP63若AsPB,B∈P,则A∈P64.若X是NPC的,则X在多项式时间内可解ifP=NP65.SAT多项式时间归约到3SA(3AT是NPC的)66.证明语言L是R/Re, Non rea) Intuitively想想有没有半判定(判定)的TM,有则Rc、(R)。若非R执行下一步。b)用能否由Re.( Non re.)语言归约到该语言,能则Re而非R( Non re)严格用归约函数定义f:A≤B,r1∈A当且仅当r1∈Beg1∈H,M∈L证明Recg2∈非H,iM∈L证明 Non rc注意方向:是从A的实例经过递归函数推向B的实例。详细介绍http://www.cs.rice.edu/nakhleh/comp481/finalreviewsp06sol.pdf67.递归与μ递归等价68.PDA中,若每一个格局至多有一个格局接在它后面,则为确定型的。确定型CF在补下封闭69.M半判定L:w∈L,ifM在w上停机,注意半判定图灵机中不存在“拒绝”状态。只要不接受w,就不停机。70. Chomsky hierarchyElements of the Chomsky HierarchyRecursively enumerable languagesRecursive languageContext sensitive languagesContext ee languageseterministccontext free languagesRegularanguages71.俩证明7.6证明P在并、交、 Kleene*连接和补运算下封闭(1)并:对任意L,LEP,遴n时间图灵机M1和nb时间图灵机M2判定它们且c=max{ab}对L1L2构造判定器MM=“对于输入字符串w1)在W上运行M1,在w上运行M22)若有一个接受则接受,否则拒绝。时间复杂度:设M1为0(n)M2为0(m)。令c=max{ab}第一步用时0(n+n),因此总时间为Oma+n)=0(n9所以L1L2属于P类,即P在并的运算下封闭。(2)连接对任意L1,L2属于P类,设有n时间图灵机M1和m时间图灵机M2判定它们,且c=max{ab}。对L1l2构造判定器MM=“对于输入字符串w=w2灬,Wn对k=0,1,21…,n重复下列步骤。在wW2…wk上运行M1,在wk1wk+2…n上运行M若都接受,则接受。否则继续。若对所有分法都不接受则拒绝。时间复杂度:(n+1x0(n+0m-0(m+4)+0(nb+4=0(nc+),F以L1oL2属于P类,即P在连接的运算下封闭。对任意L属于P类,设有时间0(n)判定器M判定它,对构造判定器MM=“对于输入字符串〔1)在w上运行M12)若M1接受则拒绝,若M1拒绝则接受。时间复杂度为:0(m)。所以属于P类,即P在补的运算下封闭。77证明NP在并和连接运算下封闭。1)并对任意L1,L2∈NP,设分别有n时间非确定图灵机M1和n时间非确定图灵机M2判定它们,且c=max{a,b}。构造判定LL2的非确定图灵机M:M=“对于输入字符串w1)在W上运行M1,在w上运行M2。2)若有一个接受则接受,否则拒绝。对于每一个非确定计算分支,第一步用时为O(n-)+O(n),因此总时间为On+n)=0(n。所以LLz∈NP,即NP在并的运算下封闭2)连接对任意L,L2∈NP设分别有na时间非确定图灵机M1和m时间非确定图灵机M2判定它们,且c=max{ab}。构造判定L1oL2的非确定图灵机M:M=“对于输入字符串w:1〕非确定地将分成两段xy,使得w=xy。2)在x上运行M1,在y上运行M23)若都接受则接受,否则拒绝。对于每一个非确定计算分支,第一步用时O(n,第二步用时为0(n)+0(m),因此总时间为o(n+m)=0(n。所以L1oL2∈NP,即NP在连接运算下封闭。专题一一图灵机可判定性问题判定以下问题是否可判定:声明:思路—想证明B问题不可解,1.从一个不可解问题A入手(如停机问题)2.创建B的—个实例,从中推出如果能解决B,A也就可以解决了3.所以B是不可解的1.一个图灵机有至少481个状态。我们可以给出这样一个TMN进行cnc(M)a)数M中状态数,直到481b)如果达到了481,N就接受,否则拒绝2.给定图灵机在空串上走了481步还没停机。构造2带图灵机N,a)2a带:写481个0b)1s带在空串上模拟M,每走一步,第2带就删掉一个0c)如果M在所有0都删掉之后停机,则N接受,否则不接受给定图灵机,判定它是否在一些输入上经过481步还没停机?a)按字典序找出所有 length
    2020-12-01下载
    积分:1
  • 696518资源总数
  • 105661会员总数
  • 6今日下载