登录
首页 » Others » 33节点的辐射型网络的研究

33节点的辐射型网络的研究

于 2020-12-10 发布
0 174
下载积分: 1 下载次数: 5

代码说明:

33节点的辐射型配电网的潮流计算,能够运行哦

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • ssh本科网上商城系统毕业设计
    本科学士的毕业论文,现在流行的前后端交互式网上图书购买系统,可直接运行
    2020-11-27下载
    积分:1
  • 66本黑客书籍全集打包下载,在家轻松防黑客
    66本黑客书籍全集打包下载,在家轻松防黑客
    2020-11-27下载
    积分:1
  • Carve CSG 几何造型库
    Carve是一个C++库,用于执行两个任意多边形网格之间的布尔操作。 支持标准的联合和交叉操作,以及对称和非对称差异。 也可以使用Carve实现自定义操作,从而允许任何输入组合形成结果。 Carve支持各种输入,包括封闭和开放表面,具有任意边数的面和具有多个不相交,嵌入或接触表面的数据集。 Carve csg还可以在面间任意插值,这意味着CSG操作不需要删除颜色,纹理坐标或其他数据。
    2020-11-01下载
    积分:1
  • OpenWrt 上运行的tcpdump
    OpenWrt 上运行的tcpdump;先安装libpcap.ipk再安装tcpdump.ipk
    2020-11-29下载
    积分:1
  • Cyclone IV GX 器件中的 PCI Express 高性能参考设计
    Cyclone V Avalon-ST 接口 PCIe 设计,FPGA 编程文件针对 Cyclone V GX FPGA 开发套件用于 x1 和 x4 Gen1 操作
    2020-11-27下载
    积分:1
  • 实用光学设计方法与现代光学系统
    包含:1:应用阻尼最小二乘法,适应法进行自动像差优化设计;2:各种典型光学系统外形尺寸计算与初始结构计算方法;3:光学设计程序
    2020-12-10下载
    积分:1
  • 基于FPGA的数字示波器
    该代码是基于FPGA的数字示波器的代码,编程语言是verilog,开发环境是Quartus II
    2020-12-03下载
    积分:1
  • 基于matlab的相机标定
    Douskos V.等牛人基于通用的Bonguet 相机标定工具箱改进编写的matlab相机标定程序,不用像原来的工具箱那样需要手动提取角点,这个软件有现成的界面,且开源,20幅左右的图片标定只需要12s。
    2020-12-03下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • stm32+fatfs+SDIO读写TF卡
    stm32+fatfs+SDIO读写TF卡,创建文件写文件读文件,获取卡容量
    2020-12-04下载
    积分:1
  • 696518资源总数
  • 104988会员总数
  • 11今日下载