登录
首页 » Others » 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

于 2020-12-10 发布
0 371
下载积分: 1 下载次数: 2

代码说明:

完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • eeg脑网络分析
    用于使用eeg数据构建脑网络指标,并且能够对这些指标进行分析
    2020-12-11下载
    积分:1
  • AutoCAD永久去教育版破解补丁
    AutoCAD永久去教育版破解补丁
    2020-11-27下载
    积分:1
  • 数值分析 最小二乘拟合
    在MATLAB上实现最小二乘拟合 有详细注释
    2020-11-30下载
    积分:1
  • 最小平方反褶积matlab代码
    最小平方反褶积matlab代码 非常实用!!!!!!!!!
    2021-05-06下载
    积分:1
  • 图像处理HSV分量的获取
    常用的图片都是用RGB颜色模型表示,将RGB转换为HSV空间
    2021-05-06下载
    积分:1
  • 基于LMS算法的自适应滤波器FPGA代码实现
    2017年电子设计大赛E题,基于LMS算法的自适应滤波器,使用xilinx芯片编写。仿真成功!只是仿真成功,没有下板调试,做自适应的可以作为参考
    2020-12-05下载
    积分:1
  • 基于matlab的工件缺陷检测
    通过比较待测工件与标准工件连通域的区别来判断工件是否有缺陷
    2020-12-04下载
    积分:1
  • 关于粗糙集和邻域粗糙集的基本理论和序算例
    关于粗糙集和邻域粗糙集的基本理论和程序算例包含邻域粗糙集计算的matlab算例,说明文档(个人编写的)说明文档包括了粗糙集和邻域粗糙集的基础知识讲解,实际算例,程序的应用介绍,程序使用算例。如果你没有积分下载,可以加我qq379786867,我发给你。这里设置了积分下载主要是为了我能赚取一些积分下载其他资源,谅解!压缩文件中包括三个m文件,一个mat文件,一个pdf文档。
    2020-12-10下载
    积分:1
  • 水声信号处理
    主要包括五本书,《水声模拟原理技术和应用》,《水声信号处理基础》,《现代声纳技术》,《信号处理和水声学》,《主动声呐检测信息原理》。这几本书基本都藏在高校图书馆和学者家里,市面基本绝版,均具有划时代的意义,论述清晰,思考深入。个人感觉,理论知识,经典就是经典。
    2020-12-12下载
    积分:1
  • 最简单的基于FFMPEG+SDL的视频播放器-最终版
    本程序实现了视频文件的解码和显示(支持HEVC,H.264,MPEG2等)。是最简单的FFmpeg视频解码方面的教程。通过学习本例子可以了解FFmpeg的解码流程。 项目包含两个工程: simplest_ffmpeg_player:标准版,FFmpeg学习的开始。 simplest_ffmpeg_player_su:SU(SDL Update)版,加入了简单的SDL的Event。 这显示该程序的最终版,除了支持VC2010之外,也支持如下几种编译方式: cl.exe命令行编译; mingw编译; gcc编译; gcc(MacOS)编译; 此外修复了个别操作系统(例如Ubuntu)中绿屏的问题。
    2019-08-17下载
    积分:1
  • 696518资源总数
  • 105531会员总数
  • 4今日下载