登录
首页 » Others » 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

于 2020-12-10 发布
0 437
下载积分: 1 下载次数: 2

代码说明:

完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 压控增益放大器(VCA)模块(VCA810)(-40dB至+40dB增益可调)(FPGA或单片机外围模块)
    压控增益放大器(VCA)模块(VCA810)(-40dB至+40dB增益可调)(FPGA或单片机外围模块)【含原理图和器件清单】
    2021-05-06下载
    积分:1
  • 维有序序列聚类分析源代码
    有序序列聚类分析算法 可以实现节点(分为 k类)的的分析
    2020-11-28下载
    积分:1
  • r语言机器学习随机森林包
    r语言随机森林包,随机森林是基于决策树的一种机器学习语言。用于医学预测,生态发展预测,且预测精度高。
    2020-06-29下载
    积分:1
  • 雷达原理和雷达对抗资料
    压缩包内有两个文件,分别是《雷达对抗与反对抗》入门书籍.pdf 雷达原理(第三版).pdf。欢迎下载
    2020-12-01下载
    积分:1
  • 电机控制Matlab仿真模型
    有5个电机仿真模型,包括开环V/F,永磁同步电机矢量控制、异步电动机的矢量控制、直接转矩控制等,欢迎下载、交流。
    2020-06-29下载
    积分:1
  • e语言-易语言雷电模拟器多开中控源码
    1.启动即可检测所有雷电模拟器2.可自由选择启动模拟器3.可自由启动线程,点击全部启动,启动已选模拟器对应的线程。放心不会重复启动不会乱,只启动选择的,如果选择已经启动,会自动识别4.可实现单停,全停,暂停,恢复,单窗口重启线程5.直接按照我的说明写单开脚本,放入接口,即可完美时间多线程操作。6.中控功能给出案例,自己研究,后期我会陆续更新功能,包括找色全分辨率识别算法7.只要你不修改界面设置,你只需要在接口写入你单开操作的代码,就可以直接实现中控看懂我画箭头的提示即可 非常简单!!启动窗口标题,直接修改属性即可改变,下面2行字是状态条文本,0和1 2项直接在启动窗口创建事件中 状态条1.置文
    2021-05-07下载
    积分:1
  • 常见4-20mA 0-5V 1-5V电路转换
    常见4-20mA 0-5V 1-5V电路转换
    2020-12-04下载
    积分:1
  • 北京市行政区划(区县)shp
    北京市行政区划的矢量文件,WGS 1984 坐标系,到乡镇区一级。如果想要其他的地区的可以留言,可以上传。
    2020-12-06下载
    积分:1
  • usb-can labview 二次开发例子
    基于labview的 usb-can上位机二次开发具体例子,里面包含具体代码,可以根据例子进行更改得到自己想要的上位机
    2020-12-10下载
    积分:1
  • C# 注册机+时间期限源码
    注册机+机器码+使用时间控制源码
    2021-05-06下载
    积分:1
  • 696516资源总数
  • 106450会员总数
  • 5今日下载