登录
首页 » Others » 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

于 2020-12-10 发布
0 394
下载积分: 1 下载次数: 2

代码说明:

完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于FPGA的高速等效采样
    基于FPGA的高速等效采样 通俗易懂 可以直接仿真,学习代码。
    2020-11-28下载
    积分:1
  • 研磨设计模式(完整版pdf) part1 (1-3)
    研磨设计模式(完整版pdf)相信我不用介绍,很多人都在找这本书吧,今天我特意从另外的地方下载到了这本书,发了几十积分。才弄到。为了让大家同时分享这本书的精华。我今天特意上传。注:此电子书较大,我分了3个部分的压缩文件,需全部下完,才可得到这电子书的pdf。下面是网上对此书的评价: 《研磨设计模式》完整覆盖GoF讲述的23个设计模式并加以细细研磨。初级内容从基本讲起,包括每个模式的定义、功能、思路、结构、基本实现、运行调用顺序、基本应用示例等,让读者能系统、完整、准确地掌握每个模式,培养正确的“设计观”;中高级内容则深入探讨如何理解这些模式,包括模式中蕴涵什么样的设计思想,模式的本质是什
    2020-12-04下载
    积分:1
  • WPF 数据可视化 大屏展示 实现地图仿echarts模拟迁移效果 Telerik图表 仪表盘
    分数已被csdn修改,我也无法修改分数,过高无法下载请联系我,我下载发给你,抱歉WPF 数据可视化 大屏展示 实现地图仿echarts模拟迁移效果 Telerik图表 仪表盘效果图https://blog.csdn.net/shishuwei111/article/details/79486365#comments
    2020-12-05下载
    积分:1
  • 基于船舶运动控制的Matlab仿真.pdf
    【实例简介】基于船舶运动控制的Matlab仿真 分析了船舶运动特点和控制方法
    2021-12-02 00:39:23下载
    积分:1
  • DELL机架式服务器最新Viso模具
    DELL机架式服务器最新Viso模具,Dell-PowerEdge-RackServers.vss
    2020-12-09下载
    积分:1
  • FPGA的CNN网络加速代码,重磅资源
    FPGA的CNN网络加速代码,重磅资源,亲侧可用的,讲述了使用HLS写入深度学习CNN的推断部分加速代码,网络通用性高。
    2020-12-06下载
    积分:1
  • 倍频计算
    自己编写的三分之一倍频声压级的计算,可供学习使用
    2020-11-27下载
    积分:1
  • MATLAB实现MAP EM算法全
    本人收集的,仅供参考!!希望能对朋友们的学习带来方便!!
    2020-12-09下载
    积分:1
  • jsp+sqlserver图书管理系统
    基于jsp的图书管理系统运用sqlserver连接数据库界面友好易于掌握
    2020-12-02下载
    积分:1
  • 最新安徽新行政区划shp
    最新安徽行政区划地图shp图层,在arcgis中开直接打开查看编辑,可用于arcgis学习使用,行政区划调整后的shp图,仅供学习使用。
    2020-11-27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载