登录
首页 » Others » 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy

于 2020-12-10 发布
0 409
下载积分: 1 下载次数: 2

代码说明:

完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • LFMCW_multi
    LFMCW线性调频连续波雷达测距测速代码,用在多目标情况,能正确反演出目标距离和速度
    2020-11-27下载
    积分:1
  • 【最新】LayoutIT离线版Bootstrap可视化布局.zip
    LayoutIT离线版Bootstrap可视化布局 离线可正常使用
    2020-12-11下载
    积分:1
  • TSP三种算法
    实现一个能够演示解决货郎担问题的小软件。要求用3种不同方法解决同一个问题,软件能够产生或者载入不同的路径矩阵,路径矩阵数据保存在硬盘文件中。城市节点数目从5、10、20、40做不同变化,观察不同节点数目下,算法运行效率和运行结果的变化趋势。软件应该给出每一个搜索步骤,最后标示出完整的解路径,并指明是否为最优解。
    2021-05-06下载
    积分:1
  • 惊天动地登陆器+网关源码,包含反外挂功能及用户IP管理.rar
    惊天动地登陆器+网关源码,包含反外挂功能及用户IP管理.rar
    2020-12-02下载
    积分:1
  • 吴恩达 Deeplearning深度学习笔记v5.41.pdf
    黄海广博士 整理的最新 吴恩达 Deeplearning深度学习笔记v5.41
    2020-12-07下载
    积分:1
  • 基于STM32F103的正负15V和80V电源输出原理图
    用STM32做的正负15V电源和80v输出的直流电源
    2021-05-06下载
    积分:1
  • 免费漂亮的WPF界面框架
    基于FirstFloor.ModernUI的免费WPF界面框架,演示了如何自定义界面字体实现。该框架界面简洁明快,易于二次开发,可开发出靓丽的应用软件。时间久远,自主降低积分
    2020-12-06下载
    积分:1
  • 软件测试——购物网站毕业设计,性能测试
    毕业设计,关于自己开发的购物网站进行的软件测试,其中包括界面测试、功能测试、性能测试(Jmeter Badboy)、安全性测试(safewvs3)。文件中包含网站程序源码和数据库脚本,还有Jmeter测试的脚本。以及本人的呕心沥血之作——毕业论文里面有使用文档,如果下载之后打不开,可以加QQ:1765311383 (请下载之后的人有问题的人,再加,闲人勿扰。很忙)
    2020-12-12下载
    积分:1
  • 支持向量机回归smo的matlab实现 附带测试训练数据 效果图
    支持向量机最初是作为分类模型出现的,特别是对于二分类模型有很好的表现。如果将支持向量机改装成支持向量回归机,将达到比线性回归或其他回归模型更加优秀的效果,而且不需要假设目标函数是优秀的回归模型。支持向量回归的求解仿照支持向量分类机。
    2020-12-06下载
    积分:1
  • 数字图像处理常用测试图片part3
    包含了图像处理中常用的一些测试图片有灰度图像也有彩色图像大小从128*128、256*256、512*512或更大的都有图像格式为pbm、ppm、pgmMATLAB下可用。共六个部分,全部下载完以后,任意解压一个即可。
    2020-12-02下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载