登录
首页 » Others » 银行家算法c++源代码

银行家算法c++源代码

于 2020-12-11 发布
0 332
下载积分: 1 下载次数: 1

代码说明:

银行家算法c++源代码

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • FPGA应用开发入门与典型实例_源代码
    FPGA应用开发入门与典型实例 ,其中具体包括 高速PCI信号采集卡设计与实现、 FPGA片上硬件乘法器的使用等
    2021-05-06下载
    积分:1
  • SVPWM电压电流双闭环整流控制matlab/simulink仿真(Rectifier.mdl)
    采用电压外环与电流内环的栓双闭环控制,产生svpwm控制,simulink仿真,整流器,设计abc/dq变换
    2020-04-28下载
    积分:1
  • 最优控制理论与应用
    【实例简介】本书是工科院校自动控制类各研究方向的硕士研究生和高年级本科生的“最优控制”课程教材。基本内容有:变分法、连续系统最优控制、线性连续系统的二次型调节器(LQR)、离散系统最优控制、最大值原理、动态规划。为配合上述六个基本内容,列举了两个应用实例,即LQR在电力系统中的应用、最小值原理在登月软着陆中的应用。本书内容适合于40学时的教学。 此外,本书还安排有最优控制的数值计算方法和奇异控制的内容,使读者对“最优控制”有完整的了解。 本书用MATLAB完成数值计算,并使用MATLAB的Symbolic Math工具箱(特别是用符号数学工具箱求取TPBVP的解析解)、Control System工具箱和Simulink(特别是用它对Bang-Bang控制完成仿真)等。 本书注重阐述思想和概念,演算明晰,力求流畅,以利阅读;部分章后附有课外阅读的参考文献、习题和上机安排。所以,本书不仅是硕士研究生和高年级本科生的教材,也可以作为自动控制技术人员的进修读物。
    2021-11-08 00:33:19下载
    积分:1
  • 基于相移法的三维重建
    基于相移法的三维重建,在linux环境下,结合opencv和opengl,实现三维重构!
    2021-05-07下载
    积分:1
  • 《自适应滤波器算法与实现》的源码
    《自适应滤波器算法与实现》 的MATLAB源码,包含了各种自适应算法,如LMS NLMS, RLS,很实用。
    2020-05-30下载
    积分:1
  • 子空间辨识方法的基本介绍
    子空间状态空间系统辨识(4SID) 方法是近年来出现的一种用于辨识线性振动系统动态特性的时域技术。它直接由输入/ 输出数据矩阵序列,通过基本的代数运算求取系统模型。本文概要地介绍了子空间系统辨识方法及其运算步骤,并应用该方法对一已知模态参数的桁架结构进行了仿真计算,得到了准确的辨识结果。关键词:系统辨识;子空间方法;结构系统
    2021-05-06下载
    积分:1
  • 分数阶混沌系统,分数阶混沌吸引子相图序实现。
    【实例简介】这是一个分数阶混沌系统,分数阶混沌吸引子相图程序实现。
    2021-11-18 00:41:40下载
    积分:1
  • 基于ip核的dds原理介绍
    基于ip核的dds原理介绍,首先介绍了dds的原理,然后使用xilinx的ip核完成设计,并给出了仿真结果,
    2020-12-09下载
    积分:1
  • 卷积译码的BCJR
    BCJR的译码,软判决.卷积码的编码和译码.
    2020-12-07下载
    积分:1
  • 平面变压器3D仿真资料
    采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
    2020-12-10下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载