登录
首页 » Others » matlab实现小波变换融合以及信息熵、平均梯度和RSEM的计算

matlab实现小波变换融合以及信息熵、平均梯度和RSEM的计算

于 2020-12-11 发布
0 242
下载积分: 1 下载次数: 6

代码说明:

matlab实现小波变换融合以及信息熵、平均梯度和RSEM的计算

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 少儿:疯狂接苹果小游戏源码(scratch 3.0)
    少儿编程:疯狂接苹果小游戏源码(scratch 3.0)
    2020-03-08下载
    积分:1
  • 基于WIFI的移动APP温湿度开发设计
    采用ESP8266的串口WIFI进行系统控制,设计手机端的app程序可以实现远程对温湿度进行检测。
    2020-12-12下载
    积分:1
  • “中国法研杯”司法人工智能挑战赛
    “中国法研杯”司法人工智能挑战赛
    2020-11-29下载
    积分:1
  • 迪杰斯特拉算法求任意两点间最短路径 无向图.rar
    【实例简介】可以计算任意两个指定点之间最短距离 无向图 节点编号为0到nodenum-1 节点容量可以自己修改 起点和终点任意 只要不超过以上范围
    2021-12-04 00:45:14下载
    积分:1
  • 零基础入门c语言pdf文档王桂林老师
    王桂林老师零基础入门C语言pdf文档。可以百度搜索对应的视频,B站上也有上传,直接搜索王桂林就可以。原创作者:王桂林技术交流:QQ3299731691. Hello world1.1.源程序111.C语言版11.2.C++版1.1.3 hello word collection12.注释.11111121.3.从源程序到可执行程序131.集成开发环境:13.2.手动编译14.致敬大师.22352. Linux常用基础命令.…21.版本选择211.内核版木…21.2.发行版本22.目录结构221.系统目求…55668222.分区与目录23.常用命令.10231.命令格式.···+······10232.目录切换233.文件操作…10234.用户管11235.网络命令11236. Ubuntu下软件安装…1124.ⅶim文本编辑11241.vim编辑器中有三种状态模式242.vim编辑器的启动与退出.243.文件操作244.光标移动操作12245.编辑操作1324.6.查找与替换操作.1324.7.学习工具 vimtutor248.vm最简易配置14249.vm与HHKB143C语言与自然语言163.1.语法规则.32.稈序与流稈.1621.程序16322.流程和流程图.323.常用制图工4.常/变量与数据类型( Data Type).·······::·191.C语言中的关键字192.变量 Variable421.变量的定义…原创作者:王桂林技术交流:QQ3299731694.2.2.变量的命名规则:…19423.交换两个变量的内容2042.4.驼峰命名法.2043.内存模型4.3.1.物理基础432.CPU读写内存..2243.3.读写流程:22434.代码演示.234.4.计算机的基石补码..2444.1.计算机编码基础..2444.2.补码的编码规则2444.3.小结264.5.数据类型.∴264.5.1.类型总揽27452.基本类型之数值类型,27453.基本类型之字符类型46.常量( Constant33461.常量类型.462.常量的人小344.7.格式输入与输出4.7. 1. printf.354,7.2 scanf384.7.3. putchar & getchar4.7.4.输入输出缓冲垂,中4··中·;,48.类型转化( Type Cast41481.隐式转化…482.强制转化483.浮点数跟0值比较4.9.练习.44491. printf返回值有意义吗?445.运算符与表达式( Operato&& Express,)··*455.1.运符符的优先级和结合性:455.2.常见运符算符及构成的表达式475.2.1.赋值运算符与赋值表达式..….….…4752.2.算术运算符与算术表达式52.3.关系运算符与关系衣达式52.4.逻辑运算符与逻辑表达式50525.条件运算符与条件表达式525.2.6.逗号运算符与逗号表达式52.7.5 izeof运算符及其表达式5.2.8.小结………………………15453.运算符综合练习5.3.1.f(x==y)与fx=y)之间的区别532.表达式3--3--3的值是多少?原创作者:王桂林技术交流:QQ3299731695.33.表达式100结构体178133.结构体类型定义1791331.无名构造类型1801332.有名构造类型1333.别名构造体类型1811334.小结81134.结构体变量初始化及成员访问.,1811341.初始化及访问821342.成员运算符木质184134.3.赋值185135.结构体数组186135.1.定义及初始化…1352.内存存储形式187135.3.实战…188136.结构体嵌套……13.6.1.结构体中可以嵌套结构体13.6.,2.嵌套结构体变量定义和初始化.…18913.7.结构体类型作参数和返回值.1901371.结构体变量作参数和返回值.37.2.结构体指针作参数190137.3.获取当前时问函数的使用191138.结构体类型的大小4··44·······1921381.结构体成员内存分布…1382.内存对齐1921383.结构体中嵌套构造类型成员的对齐193139.结构体使用注意事项.1931391.向结构体内未初始化的指针拷贝…1392.未释放结构体内指针所指向的空间…139.3.深拷贝与浅拷贝1951310.练习3101.栈的自实现13.11 typedef类型重命名196原创作者:王桂林技术交流:QQ32997316913111. typedef作用13112.定义新类型19613113. typed和# define的区别.·;“····*19713114.小结1981312.类型大总结19814.共用( Union)与枚举(Enum199141.共用体…1991411.类型定义与变量定义.141.2.内存分析1991413.共用体小结…2021414.应用∴202142.枚1421.枚举类型定义2044.2.2.枚举变量与初始化2051423.枚举常量2061424.应用206143.练习20714.31.输山·个整型数握的字符形式…2071432.实现 short类型变量高低位互换….2071433.将下面程序中case分支常量用宏和枚举米实现20715.单向链表List)20915.1.链表价值152.静态链衣.2091521.链表节点定义1522.图示节点2091523.图示链表结构21524.代码实现.210153.动态链衣…2101531.链表图示….2111532.链表名字解释…211533.创建(尾插法)21115.34.创建(头插法)2121535.遍历213153.6.求长度.21315.37.插入2131538.查找1539.删除..21415310.排序21515311.链表反转.21615.3.12.链表销毁21715313.环形链衣……217154.作业.…218541.输入一字符串,用链表形式储存218154.2.用选择法实现单向链袤的排序。2
    2020-11-29下载
    积分:1
  • C++二叉排序树的创建、插入、删除、查找.cpp
    【实例简介】二叉排序树,用前序遍历是就是增序排列,的创建删、插入、查询
    2021-11-24 00:32:29下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • 离散数学及其应用习解析+详细课件
    离散数学及其应用习题解析,及详细的课件。部分手抄版习题解答笔记。
    2021-05-06下载
    积分:1
  • COM组件写和使用示例
    代码原封不动摘自《COM技术内幕》,只不过从MAKEFILE转为vs2008实现。vs2008包含两个工程:Com工程,创建Com组件; Client工程,使用Com组件Client目录: 示例如何使用COM组件Com目录: 示例如何创建COM组件Debug目录: REGISTER.BAT 注册com组件 UnREGISTER.BAT 反注册Com组件 Client.exe示例如何使用Com组件 Cmpnt.dll手动编写的Com组件
    2020-12-01下载
    积分:1
  • 毕业设计在线视频点播系统+开报告 论文 PPT
    毕业设计在线视频点播系统+开题报告+论文+PPT
    2020-06-26下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载