登录
首页 » Others » K最短路问题MATLAB实现

K最短路问题MATLAB实现

于 2020-12-11 发布
0 210
下载积分: 1 下载次数: 2

代码说明:

对于K最短路问题,首先找出两点之间的所有路径,然后利用K最短路算法,将最短路、次短路、第三最短路等计算出来,存入数组中。该matlab程序具有很好的通用性,希望对大家有用。说明:findpath.m文件可计算出任意两点的所有路径,dijstra.m可算出两点间的最短路,main.m为K最短路算法,文件夹中附有一张计算结果图!

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 双目立体视觉源代码
    双目立体视觉源代码,包括标定,匹配,三维重建
    2020-12-07下载
    积分:1
  • 湖南大学硕士论文答辩PPT
    湖南大学硕士论文答辩PPT湖南大学硕士论文答辩PPT湖南大学硕士论文答辩PPT
    2021-05-06下载
    积分:1
  • AGV资料学习参考
    AGV系统,物流自动化AGV中级应用技术全面讲解
    2020-12-02下载
    积分:1
  • 3D模拟飞机飞行(matlab版GUI)
    3D模拟飞机飞行,在matlab GUI界面下实现,全部代码。
    2020-12-03下载
    积分:1
  • IEC 闪变检测法的simulink实现
    通过matlab/simulink平台,得到IEC电压波动和闪变现象的仿真模型
    2020-12-08下载
    积分:1
  • 目标跟踪(常速度)CV及(常加速度)CA模型
    目标跟踪中最基本的模型;对理解目标跟踪的机理、意义有很大帮助。本文比较了CV、CA模型的特点及跟踪精度的不同,对毕业设计及理论研究有很大帮助!!!包含源程序、系统方差、噪声方差取值,在一维匀速、匀加速仿真条件下实现!!!!!(输入注释中R、Q值可在matlab出图,放在work文件下);是个人论文中程序(论文已发表)。
    2020-12-06下载
    积分:1
  • unity(NGUI)计算器小案例(有源码)
    unity ngui计算器小案例,能使初学ngui的能容易上手,
    2020-12-08下载
    积分:1
  • Robosense 16线激光雷达用户手册
    RS-LiDAR-16 是深圳市速腾聚创科技有限公司最新推出的16 线激光雷达,是世界领先的小型激光雷达,主要面向无人驾驶汽车环境感知、机器人环境感知、无人机测绘等领域。
    2020-12-08下载
    积分:1
  • 基于传输线变压器的BALUN计算器
    传输线结构的BALUN计算程序,需要的人,自然明白这个的用处,HAM专用的,非普通人用的东西.
    2020-12-04下载
    积分:1
  • ISO16750-3-2012
    ISO16750-3-2012Road vehicles — Environmentalconditions and testing for electricaland electronic equipment —Part 3:Mechanical loadsContents PageForeword.............................................................................................................................................Iso16750-3:2012[EContentsPageForewordScope12Normative references1Terms and definitions4Tests and requirements4.1ibration4.2 Mechanical shock274.3 Free fall…294.4 Surface strength/ scratch and abrasion resistance294.5 Gravel bombardmentCode letters for mechanical loads29Documentation…,…………111111130Annex A (informative) Guideline for the development of test profiles for vibration tests.32Annex B (informative) Recommended mechanical requirements for equipment depending on themounting location44Bibliography46C ISO 2012-All rights reservedIso16750-3:2012EForewordISo (the International Organization for Standardization) is a worldwide federation of national standardsbodies (Iso member bodies). The work of preparing International Standards is normally carried outthrough iso technical committees. Each member body interested in a subject for which a technicalcommittee has been established has the right to be represented on that committee. Internationaorganizations, governmental and non-governmental, in liaison with ISO, also take part in the workIso collaborates closely with the International Electrotechnical Commission (IEC) on all matters ofelectrotechnical standardizationInternational Standards are drafted in accordance with the rules given in the ISo/IEC Directives, Part 2The main task of technical committees is to prepare lnternational standards. draft InternationalStandards adopted by the technical committees are circulated to the member bodies for votingublication as an International Standard requires approval by at least 75 of the member bodiescasting a voteAttention is drawn to the possibility that some of the elements of this document may be the subject ofpatent rights. ISO shall not be held responsible for identifying any or all such patent rightsIso 16750-3 was prepared by Technical Committee ISO/TC 22, Road vehicle, Subcommittee SC 3,Electrical and electronical equipment.This third edition cancels and replaces the second edition (Iso 16750-3: 2007), which has beentechnically revisedISo 16750 consists of the following parts, under the general title road vehicles-Environmental conditionsand testing for electrical and electronic equipment:Part 1: GeneralPart 2: electrical loadsPart 3: Mechanical loadsPart 4: Climatic loadsPart 5: chemical loadso ISO 2012-All rights reservedINTERNATIONAL STANDARDIso16750-3:2012(E)Road vehicles- Environmental conditions and testing forelectrical and electronic equipmentPart 3Mechanical loads1 ScopeThis part of IS0 16750 applies to electric and electronic systems/components for road vehicles. Itdescribes the potential environmental stresses and specifies tests and requirements recommended forthe specific mounting location on/in the vehicleThis part of iso 16750 describes mechanical loads2 Normative referencesThe following referenced documents are indispensable for the application of this document. For datedreferences, only the edition cited applies For undated references, the latest edition of the referenceddocument (including any amendments applies.Iso16750-1, Road vehicles- Environmental conditions and testing forelectrical andelectronicequipment-Part 1: GeneralIEC 60068-2, 6, Environmental testing- Part 2-6: Testing, Test Fc: Vibration SinusoidalIEC60068-2, 14, Basicenvironmental testing procedures- Part 2-14: Tests-Test Nb: Change oftemperatureTEC 60068-2, 64, Environmental testing Part 2-64: Test methods -Test Fh -Vibration, broad-bandrandom(digital control)and guidanceIEC 60068-2, 80, Environmental testing- Part 2-80: Tests- Test Fi: Vibration - Mixed mode testingIEC 60068-2-31, Environmental testing procedures- Part 2: Tests; Test Ec: Free fall, Clause 5.23 Terms and definitionsFor the purposes of this document, the terms and definitions given in Iso 16750-1 app4 Tests and requirements4.1 Vibration41.1 GeneralThe vibration test metho ds specified consider various levels of vibration severities applicable to on-board electrical and electronic equipment. It is recommended that the vehicle manufacturer andsupplier choose the test method, the environmental temperature and vibration parameters dependingon the specific mounting locationFollowing the expressions in MIL-STD please noticeC ISO 2012-All rights reservedIso16750-3:2012EWhen applied properly, the environmental management and engineering processes described in this partof Iso 16750 can be of enormous value in generating confidence in the environmental worthiness andoverall durability. However, it is important to recognize that there are limitations inherent in laboratorytesting that make itimperative to use proper caution and engineering judgement when extrapolating theselaboratory results to results that may be obtained under actual service conditions. In many cases, realworld environmental stresses (singularly orin combination cannot be duplicated practically or reliably intestlaboratories. Therefore, users of this part of Iso 16750 should not assume that a system or componentthat passes laboratory tests of this part of Iso 16750 would also pass field/ fleet verification trialsThe specified values are the best estimation one can get up to the moment when results frommeasurements in the car are received - but they do not replace a car measurement!The specified values apply to direct mounting in defined mounting locations. Using a bracket formounting can resultin higher or lower loads. If the device under test ( DUT)is used in the vehicle with abracket then all vibration and mechanical shock test shall be done with this bracketCarry out the vibration with the dut suitably mounted on a vibration table. The mounting method (sused shall be noted in the test report. Carry out the frequency variation by logarithmic sweeping of 0,5octave/minute for sinusoidal tests and the sinusoidal part of sine on random tests. The scope of therecommended vibration tests is to avoid malfunctions and breakage mainly due to fatigue in the fieldTesting for wear has special requirements and is not covered in this part of ISo 16750Loads outside of the designated test frequency ranges are to be considered separatelNOTE Deviations from the load on the DUT can result, should vibration testing be carried out according tothis part of Iso 16750 on a heavy and bulky dut, as mounting rigidity and dynamic reaction on the vibrator tableexcitation are different compared to the situation in the vehicle. This deviation can be minimized by applying theaverage control method(see Annex A)Application of the weighted average control method according to IEC 60068-2, 64 is to be agreed uponSubject the dut during the vibration test to the temperature cycle according to iEC 60068-2, 14, withelectric operation according to diagram 1. Alternatively, a test at constant temperature may be agreed onOperate the dutelectrically as indicatedin Figure l at Tmin(Short functional testafterthe dUT completelyreached Tmin). This functional test shall be as short as possible- only long enough to check the properperformance of the dUt. This minimizes self-heating of the dUT. Additional electrical operation of theDUT between 210 min and 410 min of the cycle (see Figure 1)Additional drying of test chamber air is not permittedIn the vehicle, vibration stress can occur together with extremely low or high temperatures; for thisreason, this interaction between mechanical and temperature stress is simulated in the test, too. afailure mechanism is, for example, a plastic part of a system/component, which mellows due to the hightemperature and cannot withstand the acceleration under this condition2o ISO 2012-All rights reservedIso16750-3:2012[EYmax20aburditt0100200300400500600yY temperature[°C]x time [ minIa Operating mode 3.2 according to ISo 16750-1.b Operating mode 2. 1 according to ISo 16750-1One cycleFigure 1-Temperature profile for the vibration testTable 1- Temperature versus time for the vibration testTimeTemperaturemin°C0206040150-4021020300max41048020See Is016750-44.1.2 Tests4.1.2.1 Test I- Passenger car, engine4.1.2.1.1 PurposeThis test checks the dUt for malfunctions and breakage caused by vibrationThe vibrations of a piston engine can be split up into two kinds: Sinusoidal vibration which results from theunbalanced mass forces in the cylinders and random noise due to all other vibration-schemes of an engine,C ISO 2012-All rights reserved3Iso16750-3:2012Ee.g. closing of valves. In the lowest frequency range from 10 Hz to 100 Hz the influence of rough-roadconditions is taken into account. The main failure to be identified by this test is breakage due to fatigueNOTE 1 Road profile usually has negligible impact on engine-mounted components. Shock inputs are effectivelysolated by suspension, and engine-mounting systemsThe test profiles specified in the following clauses apply to loads generated by(four strokereciprocating enginesNotE 2 If the dut is to be tested for a specific resonance effect, then a resonance dwell test according to 8.3.2of IEC 60068-2, 6: 2007 can also be applied4.12.1.2Test4.1.2.1.2.1 GeneralIt is required to perform this test as a mixed mode vibration test according to IEC 60068-2, 80NOTE The test duration is based on A 4. The temperature in the chamher is above room temperature (rt)atthe end of the test (2 3/4 temperature cycles4.1.2.1.2.2 Sinusoidal vibrationPerform the test according to IEC 60068-2, 6, but using a sweep rate of s 0,5 octave/minute. Use a testduration of 22 h for each plane of the dUTUse curve l in Table 2/ Figure 2 for DUT intended for mounting on engines with 5 cylinders or fewerUse curve 2 in Table 2/Figure 2 for dUT test intended for mounting on engines with 6 cylinders or moreBoth curves may be combined to cover all engine types in one test2502001501005050100150200250300350400450500ⅩKeyamplitude of acceleration [m/s2IXfrequency [Hzcurve1(≤5 cylinders)curve 2(5 cylindersFigure 2- Vibration severity curves4o ISO 2012-All rights reservedIso16750-3:2012[ETable 2- values for max acceleration versus frequencyCurve 1(see Figure 2FrequencyAmplitude of accelerationHz100100200200240200270100440100Curve 2(see Figure 2)FrequencyAmplitude of accelerationHm/s2100100150150440150CombinationFrequencyAmplitude of accelerationH1001001501502002002402002551504401504,1.21.2.3 Random vibrationPerform the test according to IEC 60068-2, 64. Use a test duration of 22 h for each plane of the DUTThe r.m.s. acceleration value shall be 181 m/s2The psd versus frequency are referred to in Figure 3 and Table 3NoTE The Power Spectral Density(PSD)values (random vibration] are reduced in the frequency range of thesinusoidal vibration testC ISO 2012-All rights reserved5Iso16750-3:2012EY100100,110100100010000KeyY PSD [(m/s2)2/HzX frequency [Hz]Figure 3- PSD of acceleration versus frequencyTable 3- Values for frequency and PsDFrequencyPSDH:(m/s2)2/Hz1010100103000,5150020200024.1.2.1.3 RequirementBreakage shall not occur.Functional status a see iso 16750-1) is required during operating mode 3.2 as defined in ISo 16750-1and functional status C during periods with other operating modes4.1.2.2 Test II-Passenger car, gearbox4.1.2.2.1 PurposeThis test checks the dut for malfunctions and breakage caused by vibrationThe vibrations of a gearbox can be split up into two kinds which result partly from sinusoidal vibrationfrom unbalanced mass forces of the engine(e. g dominating orders) in the frequency range from 100 Hzto 440 Hz and vibration from the friction of the gear wheels and other schemes, which are tested in therandom part. In the lowest frequency range from 10 Hz to 100 Hz the influence of rough-road conditionsis taken into account The main failure to be identified by this test is breakage due to fatigueChanging the gears can create additional mechanical shock and shall be considered separatey brationsThe test profiles specified in the following subclauses apply to loads generated by gearbox vibo ISO 2012-All rights reserved
    2020-12-08下载
    积分:1
  • 696518资源总数
  • 104943会员总数
  • 10今日下载